704.二分查找
力扣题目链接
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
二分查找使用前提:有序数组+数组中无重复元素
时间复杂度O(logn)
,空间复杂度O(1)
- 左闭右闭
[left,right]
class Solution {
public:
int search(vector<int>& nums, int target) {
int left=0,right=nums.size()-1;
while(left<=right){
int mid=left+((right-left)/2); //防止溢出
if(nums[mid]==target)
return mid;
else if(nums[mid]>target)
right=mid-1;
else
left=mid+1;
}
return -1;
}
};
- 左闭右开
[left,right)
class Solution {
public:
int search(vector<int>& nums, int target) {
int left=0,right=nums.size();
while(left<right){
int mid=left+((right-left)/2); //防止溢出
if(nums[mid]==target)
return mid;
else if(nums[mid]>target)
right=mid;
else
left=mid+1;
}
return -1;
}
};
总结:解决开区问题的关键是区间边界是否有意义,即结果是否能够取到该边界
27.移除元素
力扣题目链接
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。
元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
- 暴力法 时间复杂度
O(n^2)
空间复杂度O(1)
算法:两层for循环,外层遍历数组,内层删除元素
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int n=nums.size();
for(int i=0;i<n;i++){ //遍历数组
if(nums[i]==val){
for(int j=i+1;j<n;j++){ //删除元素
nums[j-1]=nums[j];
}
i--; //原位置填充了新的元素,因此要重新比较
n--;
}
}
return n;
}
};
- 双指针法 时间复杂度
O(n)
空间复杂度O(1)
算法:双指针法(快慢指针法):通过一个快指针和慢指针在一个for循环下完成两个for循环的工作
快指针:遍历数组,寻找新元素
慢指针:存储所需元素,更新数组
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int slow=0;
for(int fast=0;fast<nums.size();fast++){
if(nums[fast]!=val) //当快指针的值与val不同时,存储元素到慢指针中
nums[slow++]=nums[fast];
}
return slow;
}
};
-
优化双指针 时间复杂度
O(n)
空间复杂度O(1)
算法:双指针,一首一尾,向中间移动遍历
- 左指针判断是否相等,若相等,则右指针的值赋值到左指针,右指针-1
- 利用右指针的值替换不需要的元素
利用左指针判断相等的原因:右指针的值可以丢弃,因此用左边保留元素
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int left=0,right=nums.size()-1;
while(left<=right){
if(nums[left]==val){
nums[left]=nums[right]; //相等,则右指针的值赋值到左指针
right--;
}
else
left++;
}
return left;
}
};
优化双指针仅需遍历数组一遍就可,而原双指针至多遍历数组两遍
-
相向双指针 时间复杂度
O(n)
空间复杂度O(1)
算法:同三,写法类似快排
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int leftIndex = 0;
int rightIndex = nums.size() - 1;
while (leftIndex <= rightIndex) {
// 找左边等于val的元素
while (leftIndex <= rightIndex && nums[leftIndex] != val){
++leftIndex;
}
// 找右边不等于val的元素
while (leftIndex <= rightIndex && nums[rightIndex] == val) {
-- rightIndex;
}
// 将右边不等于val的元素覆盖左边等于val的元素
if (leftIndex < rightIndex) {
nums[leftIndex++] = nums[rightIndex--];
}
}
return leftIndex; // leftIndex一定指向了最终数组末尾的下一个元素
}
}