自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 收藏
  • 关注

原创 Focal Network for Image Restoration

然后,浅层特征通过三尺度对称编码器-解码器传递,并转换为恢复特征,即解码器的第一个尺度中的MResBlock的输出特征。在受此启发的基础上,在这项研究中,我们不追求大的感受野或对Transformer架构进行修改,而是通过更多地关注用于重建的信息信号(如边缘信息或难以恢复的区域)来开发一个高效且有效的基于CNN的框架。受到这样一个事实的启发,即降质/清晰图像对具有相似的低频分量,但在高频方面有所不同,我们通过提出的FSM来进一步强调包含输入/清晰图像对之间真正差异的区域,通过移除最低频率。

2023-11-30 22:11:55 1176

原创 Rethinking Performance Gains in Image Dehazing Networks

我们的模型,gUNet,可以看作是一个7阶段的U-Net变体,其每个阶段由一堆提议的gConv块组成。与我们的工作最相似的是 NAFNet [6],因为我们两者都不使用传统的非线性激活函数,如 ReLU 和 GELU,而仅仅依赖门控机制来实现非线性。此外,我们将全局信息的提取分配给基于SK模块的模块[26],SK模块动态地融合来自不同路径的特征映射。具体来说,我们使用门控机制将U-Net中的卷积块交换为残差块,使用选择性核融合主要路径的特征映射并跳过连接,并将得到的U-Net变体称为gUNet。

2023-10-08 19:28:23 179

原创 USCFormer: 基于语义对比学习的图像去雾统一变压器2023

最近,随着深度学习的进步,人们提出了大量基于学习的去雾算法[10]、[11]、[12]、[13]、[14]、[15]、[16]、[17]来克服基于先验方法的缺点。从(a)到(f):(a)朦胧图像,以及(b) Swin Transformer[4]的去雾结果,(c)我们的统一Transformer网络,(d)带负样本的统一Transformer网络(无SCR), (e)我们的完整模型(统一Transformer网络+负样本+ SCR),以及(f)地真图像。同时,在主块中引入卷积干,从输入特征中提取局部特征。

2023-08-31 12:29:37 413

原创 Haze removal for single image: A comprehensive review单幅图像的雾霾去除:一个全面的回顾2023

摘要:图像去雾一直是计算机视觉领域的研究热点,雾霾对相机成像质量影响很大。因此,在过去的几十年里,人们提出了许多图像去雾方法。为了帮助初涉该领域的研究人员快速了解图像除雾的发展历史和现状,本文对几种具有代表性的除雾方法进行了分析,评价了它们的优缺点,并从不同的角度指出了最佳的除雾方法。大量实验表明,一般认为AECR-Net是最好的除雾算法,Tarel方法是最好的实时除雾方法。此外,本文还讨论了图像去雾的主流基准、指标、挑战和机遇。Introduction雾霾对机器视觉系统的性能有很大的影响。雾霾

2023-08-21 11:14:50 1046 1

原创 SADnet: 基于注意机制的半监督单幅图像去雾方法2022

摘要:许多现实生活中的任务,如军事侦察和交通监控需要高质量的图像。然而,在有雾或雾霾天气下获取的图像对这些现实任务的实施构成了障碍;因此,图像去雾是一个重要的研究问题。为了满足实际应用的要求,单一的图像去雾算法必须能够有效地处理真实世界的朦胧图像,具有较高的计算效率。在这篇文章中,我们提出了一个快速和强大的半监督去雾算法SADnet的实际应用。SADnet利用合成数据集和自然模糊图像进行训练,因此它对现实世界的模糊图像具有良好的泛化能力。此外,考虑到雾霾在大气环境中的不均匀分布,信道空间自注意(CSSA)

2023-08-20 15:36:34 505 1

原创 RefineDNet: A Weakly Supervised RefinementFramework for Single Image Dehazing用于单幅图像去雾的弱监督细化框架2021

摘要:无雾图像是许多视觉系统和算法的先决条件,因此单幅图像去雾在计算机视觉中具有至关重要的意义。在这一领域,基于先验的方法已经取得了初步成功。但是它们的先验很难适应所有情况。相比之下,基于学习的方法可以产生更自然的结果。然而,由于缺乏与训练样本相同场景的成对的有雾且清晰的户外图像,其去雾能力有限。在这项工作中,我们试图通过将去雾任务分为两个子任务,即可见性恢复和真实感改善,来融合基于先验和基于学习的方法的优点。具体来说,我们提出了一个两阶段弱监督脱雾框架,RefineDNet。在第一阶段,RefineDN

2023-08-19 19:07:16 239

原创 Unpaired Deep Image Dehazing Using Contrastive Disentanglement Learning 基于对比解纠缠学习的非配对深度图像去雾2022

与我们的方法最接近的是[44],但不同之处在于,我们的方法在CycleGAN框架中执行对比操作,这得益于在反向循环中挖掘未配对的清晰示例的属性。具体来说,通过传统的对比学习来学习训练网络骨干网的表示,其目的是通过最小化对比损失,在特征空间中拉取相似的特征分布,推开不相似的特征。在我们的框架中,两个交替更新的路径进行极小极大博弈,以实现潜在特征空间中的因子解纠缠。有了这些难的负面对手,骨干表示网络上的图像编码器将学习对潜在因素的更有区别的表示,从而我们可以解开这些因素在双向翻译过程中的离散变化。

2023-08-18 17:03:19 160 1

原创 Dehaze-AGGAN: 使用增强的注意力引导生成对抗网络的非配对遥感图像去雾2022

此外,我们还建立了一个新的雾霾数据集,称为遥感雾霾数据集(RSD),该数据集包含了7000幅模拟和真实的雾霾图像,其中包括3500幅军舰图像和3500幅民用船舶图像,并在数据集上对我们的方法进行了评估。4)虽然我们的方法在未配对的单图像去雾模型中表现出最好的去雾效果,但与其他配对的单图像去雾模型相比,我们的方法仍有提高的空间。与CycleGAN[21]一样,我们在有雾图像域X和无雾图像域Y之间使用了两个映射,即X→ [Ae Y,Ce Y]→G(X)和Y→[Ae X,Ce X]→F(Y)。

2023-08-18 14:42:05 347 2

原创 Cycle-SNSPGAN基于周期谱归一化软似然估计补丁GAN的真实图像去雾2022

摘要:图像去雾是自动驾驶、交通监控等领域的常见操作。近年来,基于学习的图像去雾取得了很好的效果。然而,从现实世界中捕获模糊/干净图像对来训练图像去雾网络几乎是不可能的。现有的去雾模型大多是从合成生成的雾霾图像中学习而来的,由于存在明显的域偏移,对真实雾霾场景的泛化效果较差。为了解决现实世界模糊图像所带来的这种不成对问题,我们提出了周期谱归一化软似然估计补丁生成对抗网络(Cycle- snspgan)用于图像去雾。Cycle-SNSPGAN是一种无监督去雾框架,用于提高对真实朦胧图像的泛化能力。为了利用现实

2023-08-16 14:52:27 318 4

原创 Enhanced CycleGAN Network with Adaptive Dark Channel Prior for Unpaired Single-Image Dehazing2023

因此,我们取k的值为15,以确保前景区域的Ω在这个范围内是自适应的。值得注意的是,虽然我们将天空区域的patch scale设置得比前景区域大得多,但天空区域通常不会包含太多的细节,色彩饱和度更均匀,场景的构图也更简单。虽然使用循环一致性损失可以去除部分噪声,但我们还在VGG16网络的基础上添加了循环感知损失,提取了更丰富的细节和高级特征,进一步增强了结构相似性,保证了更逼真的视觉效果。,这些环境在自然界中存在不同的厚度和不均匀的分布,导致生成的雾霾图像与实际拍摄的雾霾数据集之间存在很大的差距。

2023-08-14 10:48:33 184

原创 VAE-CoGAN: Unpaired image-to-image translation for low-level vision用于低级视觉的非配对图像到图像的翻译2023

X1为雾霾或雨的图像;训练 VAE 的过程涉及最大化一个下界,称为变分下界(Variational Lower Bound),这涉及到最大化数据的似然性和潜在变量的分布之间的一项损失函数,以及编码器和解码器之间的重构损失。例如,在图像生成中,共享潜空间可以表示为一个低维的向量空间,其中不同的生成器可以操作这个共享潜空间来生成不同领域的图像。共享潜空间的一个重要应用是在多模态学习中,其中不同类型的数据(例如文本、图像、声音等)可以在共享的潜空间中表示,从而使模型能够更好地进行不同模态数据之间的关联和转换。

2023-08-13 10:44:01 99 1

原创 ADE-CycleGAN: A Detail Enhanced Image DehazingCycleGAN Network一个细节增强图像去雾CycleGAN网络2023

的引入还可以改善网络的接受野,增强特征的表达能力,平衡因相同而产生的偏差注意机制。同样,对DeConvlayer1生成的特征图进行采样,通过1 × 1的卷积得到Q向量,对DeConvlayer2生成的特征图进行1 × 1的卷积得到K向量,对DeConvlayer3生成的特征图进行1 × 1的卷积得到V向量,用于计算多头注意权值。Ren[4]提出了一种多尺度的MSCNN网络,利用CNN网络的两种不同尺度来预测整体图像的折射率,并对局部区域进行细化,学习图像特征的传递,但得到的图像存在边缘细节模糊的问题。

2023-08-13 08:43:16 793 2

原创 DFC-dehaze:一种改进的循环一致生成对抗网络非配对图像去雾2023

然而,原始图像和循环重建图像之间的计算损失不足以恢复所有的结构信息,因为模糊图像大多是严重损坏的。在训练过程中,碰巧包含雾霾的补丁可以为生成器提供额外的梯度,因为它们的输出明显低于整个图像。此外,我们还将生成一个大规模的未配对的真实世界的雾霾/清晰数据集,并将我们的方法扩展到真实世界的去雾。然而,在现实世界中,图像中的不同物体和结构可能在不同的尺度上具有不同的视觉特征。通过计算这些权重,模型可以将全局的上下文信息纳入到每个元素的表示中,从而使得模型能够更好地理解序列中的各个部分之间的关系。

2023-08-10 18:22:22 1117 5

原创 Single image dehazing using improved cycleGAN✩使用改进的cycleGAN进行单图像除雾2021

摘要:雾霾是悬浮在大气中的非常细的、广泛分散的固体和/或液体颗粒的聚集。在本文中,我们提出了一种用于单幅图像去雾的端到端网络,该网络通过在发生器内引入专门用于去雾的transformer 架构来增强CycleGAN模型。该模型以一种不配对的方式训练清晰图像和模糊图像,不需要对模糊图像和相应的地真清晰图像进行训练。此外,该模型不依赖于对大气散射模型参数的估计。相反,它使用k估计模块作为生成器的transformer ,以完成端到端建模。所提出的生成器模型中引入的特征转换器将编码的特征转换成所需的特征空间

2023-08-07 21:13:32 1287 2

原创 Densely Connected Pyramid Dehazing Network密集连接的金字塔式脱雾网络

例如,将传输图输入预定义的VGG-16[37]模型,然后将层relu1 2输出的某些特征可视化,可以清楚地看到,在相应的特征图中保留了边缘信息(见图5)。基于这些观察结果,并受到深度估计中使用的梯度损失[43,26]以及低级视觉任务中使用的感知损失[20,49]的启发,我们提出了一种新的边缘保持损失函数,该函数由L2损失、双向梯度损失和特征边缘损失三部分组成,定义如下。因此,为了利用这两种模态之间结构信息的依赖性,我们引入了一个联合鉴别器来学习联合分布,以确定相应的对(传输图、去雾图像)是真还是假。

2023-08-06 21:57:12 162

原创 Physical-Guided Restoration and Depth-Guided Refinement非配对图像去雾与物理引导恢复和深度引导细化2022

为了使问题能够很好地提出,早期的基于先验的方法利用手工制作的统计数据来开发J(x)的合适解决方案,例如暗通道先验(DCP)[4]、颜色衰减先验(CAP)[5]和雾线先验(HLP)[6]。然而,仅使用基于物理的模型来设计网络并不能使该方法具有鲁棒性,因为该模型只是对现实世界的粗略近似,特别是在遥远的场景中,如图1(c)和(e)所示。从根本上说,现有的非配对除雾方法不提供联合学习方案充分结合了物理模型在恢复能见度方面的优点和深度特征在提高清晰度方面的特性,有助于在没有配对数据的情况下进行图像去雾。

2023-07-31 15:56:43 75

原创 TowardsPerceptual I-D byPhysics-Based Disentanglement and AdversarialTraining基于物理解缠和对抗训练的感知图像去雾2018

我们将感知图像去雾问题视为一个未配对的图像到图像的转换问题,其中源域(模糊)的图像在没有任何配对信息的情况下被映射到目标域(无雾)。与生成对抗网络(GANs)的设置相同(Goodfellow et al . 2014),这里的“真实”数据是指从目标域(无雾图像)采样的图像, 假”数据是指从源域(朦胧图像)的样本生成的图像。首先,室外场景的图像可能包含异质的气氛、复杂的场景和不规则的照明(参见图4中的例子),这使得对真实介质传输的估计不可靠。隐藏的因素进一步受到对抗性训练程序和基于先验的正则化的约束。

2023-07-31 14:56:58 73

原创 DEHAZE-GLCGAN: UNPAIRED SINGLE IMAGE DEHAZING VIAADVERSARIAL TRAINING通过对抗性训练对单幅图像进行去雾2020

目前的大多数解决方案需要成对的图像数据集,包括朦胧图像和相应的无雾真地图像。然而,我们观察到,对于空间变化的雾霾图像,即在图像中存在雾霾密度变化的情况下,全局鉴别器往往会失效,因此需要对图像的不同部分进行不同的增强。在本文中,我们将图像去雾问题视为图像到图像的转换问题,并提出了一种循环一致的生成对抗网络,称为Dehaze-GLCGAN,用于非配对图像去雾。我们可以看到,与以前的工作相比,所提出的方法(图3d)更有效地去除雾霾,生成更逼真的干净图像,同时与以前的工作相比,在更小的训练数据集上进行训练。

2023-07-26 15:59:49 172 1

原创 Self-augmented Unpaired Image Dehazing via Density and Depth Decomposition基于密度和深度分解的自增强非配对图像去雾2022总结

在估计场景深度的情况下,我们的方法能够重新渲染不同厚度的雾霾图像,进一步有利于去雾网络的训练。值得注意的是,在这个分支中,由于βC是从预定义的范围内采样的,因此我们的雾化过程可以看作是对接下来的雾化网络训练的数据增强操作。换句话说,它惩罚我们去雾化和复原的图像在视觉上应该是真实的,并且遵循与训练集XH和XC中的图像相同的分布。请注意,我们的深度估计网络GE与其他单图像深度估计网络具有相同的功能[19,33],但我们在训练过程中没有使用任何来自现有深度估计器的预训练权值或地面真值深度监督。

2023-07-19 18:27:49 317

原创 DD-CycleGAN通过双鉴别器循环一致生成对抗网络进行非配对图像去雾(Cycledehaze扩展)2019

尽管近年来在图像去雾方面取得了进展,但这项任务仍然具有巨大的挑战性。为了提高雾霾去除的性能,我们提出了一种基于双鉴别器循环一致生成对抗网络(DD-CycleGAN)的雾霾去除方案,该方案利用CycleGAN将雾霾图像转换为相应的无雾图像。与其他方法不同的是,它不需要对雾霾及其对应的无雾图像进行训练。大量的实验表明,该方法在定量和定性上都比现有方法有了显著的改进。并且我们的方法应用到真实场景中也能获得很好的定性效果。

2023-07-18 16:21:55 734

原创 CDNet: Single Image De-hazing using Unpaired Adversarial Training使用非配对对抗训练的单幅图像去雾(Cycledehaze扩展)2019

因此,我们可以期望得到分段平滑的深度(平滑的气溶胶密度)和相应的光滑的TrMap在对应于同一物体的像素处。然而,在一个朦胧的场景中,一个额外的成分,即雾霾,使得一个约束下的模型来学习干净和朦胧图像之间的映射。为了克服多图像依赖性,通过施加不同的条件来估计单幅图像中的场景深度,提出了各种先验[4,8,34,12,2,35,41,15]。模型的其余设置与[40]相似。实例归一化的主要思想是将每个样本(或特征图中的每个像素位置)独立地进行归一化,以减少特征之间的相关性,从而提供更好的特征表达和更稳定的训练过程。

2023-07-18 16:20:41 363

原创 Efficient Unpaired Image Dehazing with Cyclic Perceptual-Depth Supervision基于循环感知深度监督的高效非配对图像去雾2020总结

在表1(b)中,我们比较了使用相同倍频生成器但使用三种不同鉴别器的两种模型的性能:(1)规则3层,(2)3- octconvo层,(3)具有谱归一化的3- octconvo层[12]。如表1(c)所示,添加循环深度一致性损耗可以获得更高的性能(PSNR提高6.64%,SSIM提高8.22%),使用Octave卷积发生器和鉴别器的骨干上的FLOPs略有增加,而添加SSIM损耗会导致PSNR略有下降。为了在我们的模型中引入深度感知,我们利用了深度估计算法的有效性可能受到图像中存在的雾霾的不利影响的观察结果。

2023-07-18 16:18:05 118

原创 Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing循环去雾:增强循环gan单幅图像去雾(重要基础)2018

本文针对单幅图像的去雾问题,提出了一种端到端网络,称为Cycle-Dehaze,该网络不需要对模糊图像和相应的地面真值图像进行训练。也就是说,我们通过以不配对的方式输入干净和模糊的图像来训练网络。此外,该方法不依赖于对大气散射模式参数的估计。我们的方法通过结合循环一致性和感知损失来改进CycleGAN公式,以提高纹理信息恢复的质量,并生成视觉上更好的无雾图像。通常,用于除雾的深度学习模型采用低分辨率图像作为输入,并产生低分辨率输出。

2023-07-12 21:37:45 1084

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除