ADE-CycleGAN: A Detail Enhanced Image DehazingCycleGAN Network一个细节增强图像去雾CycleGAN网络2023

摘要:在去雾过程中保持图像细节仍然是深度学习领域的一个关键挑战。该网络利用对抗损失循环一致性损失,保证生成的去雾图像与原始图像相似,但不能保留图像的细节。为此,我们提出了一种细节增强图像CycleGAN,以在去雾过程中保留细节信息。该算法首先以CycleGAN网络为基本框架,将U-Net网络的思想与该框架相结合,在多个并行分支中提取图像不同空间的视觉信息特征,并引入Dep residual blocks学习更深层次的特征信息。其次,在生成器中引入multi-head attention mechanism,增强特征的表达能力,平衡同一注意机制产生的偏差;最后,在公共数据集D-Hazy上进行了实验。与CycleGAN网络相比,本文的网络结构使图像去雾效果的SSIM和PSNR分别比网络提高了12.2%和8.1%,并保留了图像去雾细节。

背景:

目前主流的单幅图像去雾方法分为两大类:基于大气光模型的复原方法基于深度学习的去雾方法。He[1]的暗通道先验法和Zhu[2]的颜色衰减法是基于物理模型和图像信息的典型图像去雾方法。虽然这些方法都具有良好的去雾性能,但当亮度场景与当前照明亮度相近时,暗通道先验理论无法达到预期的去雾效果,而Zhu的颜色衰减方法可以去除大部分雾,但增强后的图像中仍有部分存在雾。在深度学习除雾的研究中,Cai[3]首先提出了DehazeNet网络,使用卷积神经网络代替人工先验方法,实现了雾天图像与单幅图像构建的透射图像端到端的映射关系,但该方法通过估计透射图和大气光的强度,在一定程度上影响了网络的除雾效果。Ren[4]提出了一种多尺度的MSCNN网络,利用CNN网络的两种不同尺度来预测整体图像的折射率,并对局部区域进行细化,学习图像特征的传递,但得到的图像存在边缘细节模糊的问题。Li[5]提出了AOD Net网络,通过结合透射图和大气光折射率作为训练参数。但是,除雾后,图像变暗和失真。

图像去雾算法一直是目标检测图像预处理领域的一个研究难点,研究者对此进行了大量的研究。Zhang[6]提出了端到端密集连通金字塔去雾网络。在大气散射模型的基础上,利用两个网络分别对透射率和大气光进行估计得到去雾图像,并根据提出的基于生成对抗网络框架的联合鉴别器判断去雾图像是否有效。Dong[7]利用反向投影技术设计了密集特征融合模块,提出了一种多尺度增强去雾网络来解决空间信息问题。Mehta[8]通过设计CycleGAN的增强版R2HCycle和增强版H2RGAN,提出了高光谱引导图像去雾的生成对策网络,构建了HideGAN的网络结构;Mehta使用HideGAN将高光谱图像与周期一致性和骨架损失相结合,分析整个光谱所携带的相关信息,对退化图像进行除雾。Qin[9]将通道注意机制像素注意机制相结合,提出了一种由特征注意(FA)模块、基本块结构和不同层次的基于注意的特征融合(FFA)结构组成的端到端特征融合注意网络,实现图像去雾。虽然去雾后的图像在纹理细节和色彩保真度上都很出色,但仍然有一些雾霾残留。

Jaisurya[10]提出了一种增强的CycleGAN架构,用于不匹配的单图像去雾,并在生成器中嵌入了基于注意力的transformer架构。他[11]提出了ACC-GAN来最大化模糊域和无模糊域之间的互信息。在潜在表示空间中,引入对比约束,保证恢复后的图像更接近清晰图像,远离模糊图像,从而间接调节无监督去雾过程。Ma[12]提出了一种基于注意力的非配对图像学习方法用于单幅图像去雾。该方法利用CycleGAN的约束迁移学习能力和循环结构对未配对数据执行无监督图像去雾任务。

CycleGAN (Cycle-Consistent Generative Adversarial Networks)可以在不配对数据集信息的情况下完成训练[13-15]。此外,CycleGAN提出了端到端去雾模型,该模型可以学习雾天图像与无雾清晰图像之间的映射关系,但不能保证雾天图像映射到期望的高质量清晰图像,并且存在去雾后图像模糊和信息丢失的问题

针对上述问题,我们以CycleGAN为基本模型框架,提出了一种细节增强的图像去雾CycleGAN网络(ADE-CycleGAN)。我们结合U-Net[16]网络的思想,增加深度特征提取与融合模块,提高特征提取能力;增加多头关注机制,弥补网络中单一关注机制的局限性,从而有效提高网络的除雾效果。

本文的主要贡献包括三个方面:

(1)在生成器的多个并行分支中构建深度残差块Dep residual blocks,提取图像的深度特征信息,并将这些分支与超采样的特征信息融合,以增加重建图像的细节,避免恢复图像的失真和模糊。

(2)我们增加了多头注意机制,可以从多个维度提取特征信息,并平衡同一注意机制在不同方向上产生的偏差,从而有效提高网络的整体去雾效果。

(3)为了解决图像细节损失和颜色变化问题,我们在损失函数的基础上增加了circular perception loss颜色调整损失[17],保留了原始图像的细节,并改进了发生器的效果来生成去雾图像。

注意机制 

在大雾天气中,传统网络难以捕获感兴趣的目标。因此,学者们提出了注意机制[18]来强化网络模型,增加对目标区域的关注程度,提高整体网络特征提取能力。注意机制本质上是一种资源分配方案,通过分配不同的权重系数来增加对目标区域的关注程度。

注意机制主要分为通道注意机制空间注意机制。Jie[19]提出了通道注意机制的一种变体:SE注意机制。该方法通过通道域的角度对图像的不同位置赋予不同的权重,得到更重要的特征信息,增强了各通道的特征,提高了网络的特征表达效果。Woo[20]提出了一种新的注意机制CBAM (convolutional block attention module),将通道注意机制与空间注意机制相结合。该方法将通道注意机制与空间注意机制连接起来,获得更全面可靠的注意信息,并对两个维度的注意进行分配,提高了通道和空间中各个特征的连通性,也可以提取目标的有效特征。

近年来,注意机制[21-25]具有聚焦区域的优势。此外,注意机制已成为图像识别、图像分割等深度学习领域的理论基础。但是,单一的注意机制只能在查询与键之间建立依赖关系(即给出一个查询,计算查询与键之间的相关性,然后根据相关性找到最合适的值),而不能在自身与整体之间建立依赖关系。同时,同样的注意机制也会产生局部偏差和整体偏差,具有一定的局限性。

深度可分离卷积

深度可分离卷积[26]比卷积具有更轻的参数。深度可分卷积的思想是通过通道卷积和1 × 1的逐点卷积运算将原标准卷积运算分解为多个通道,并将原标准卷积层分解为两个不同的卷积层,其中逐通道卷积层的一个卷积核负责一个通道,一个通道仅由一个卷积核进行卷积。逐点卷积层负责对前一层输出的不同通道特征映射进行线性组合(过程中生成的特征映射的通道数与输入的通道数完全相同),可以有效地利用同一空间位置不同通道特征映射的特征信息。这种分解可以大大减少计算量和模型参数的数量。

Materials and Methods

由于其部署方便,CycleGAN已广泛应用于许多工业和智能交通场景。与GAN相比,不需要配对数据集进行训练,并且具有良好的去雾效果。CycleGAN在图像细节去雾方面没有做太大的改进,导致图像去雾效果不佳。因此,有必要对CycleGAN网络进行改进,以适应图像的细节去雾。考虑到实时检测的要求,选择CycleGAN作为本文的后续改进。改进后的网络与cycleGan结构类似。

ADE-CycleGAN

ADE-CycleGAN除雾网络架构如图1所示,每个分支包括一个鉴别器并共享两个发生器。首先,将雾图像x输入到CycleGAN的生成器GA中,得到生成的图像Y 0。然后将生成的图像Y 0输入到生成器GB中,得到生成的图像x 0。接下来,将生成的图像和真实的清晰图像一起输入到鉴别器中,用鉴别器对雾状图像进行判断,并输出判断结果。最后,根据生成的图像和判别结果,计算损失函数并更新生成器和判别器的参数,得到最优的去雾模型。

 该网络架构从输入图像中提取纹理数据并输出唯一的去雾图像。在损失函数中引入了循环感知损失色彩调整损失的概念。将这两个概念结合起来,可以增强真实图像与无雾图像之间的相似性,提高网络的鲁棒性

生成器
在图像去雾的过程中,CycleGAN网络会产生图像颜色变化和细节丢失的问题[27-29]。为了解决上述问题,我们提出了ADE-CycleGAN(一种细节增强的图像去雾CycleGAN网络)。通过将特征融合思想与Dep deep depth block相结合,生成网络可以更好地捕获图像背景中的详细信息,有利于提高生成网络的去雾效果,并且多头注意机制的引入还可以提高网络的接受场,增强特征的表达能力,平衡同一注意机制产生的偏差。

发生器在除雾过程中能够保留背景信息的内容并还原细节,其网络结构如图2所示。网络结构包括特征提取结构级联残差网络块Dep deep depth block特征融合重构结构多头注意机制块。特征提取结构中三个卷积层的卷积核分别为7 × 7、3 × 3和3 × 3。7 × 7的卷积核扩大了网络中的图像感知领域,网络可以更好地捕捉图像的细节。之后,两个3 × 3大小的卷积核可以有效减小提取的特征图的大小,有利于网络训练。级联残差网络块可用于增加生成器网络的深度,从而提高特征提取能力。Dep deep depth block使用从不同特征图中提取的卷积块,并将其与上述采样的恢复特征图融合作为下一个输入;该网络可以有效地提高整体和局部细节信息的提取,解决图像卷积和池化重建后的细节丢失问题。采用多头注意机制确定模型中特征映射的焦点。它以不同的顺序处理不同的特性,为处理不同的内容提供了额外的灵活性

Dep Residual Block Structure

在生成图像的过程中,CycleGAN网络结构可以同时改变对象和背景。以Zhu[28]的经典方法为例,CycleGAN将马的外观从马变成了斑马,但将明亮的背景变成了深色背景,在图像细节构建上造成了纹理损失和图像失真。因此,为了解决去雾和图像重建过程中由于背景变化导致细节特征消失的问题,我们在网络中设计了deep残差块结构,通过深度可分离卷积网络提高了网络提取特征信息的能力,并增加了网络的深度以获得更大的感知场,从而提高网络对不同像素相似特征的敏感性和适应性。

在不增加计算复杂度的情况下,也能有效地解决深度网络梯度消失问题。Dep残差块结构如图3所示

 

利用剩余块可以增加网络深度;同时,也大大增加了网络参数的计算量。因此,我们引入了深度可分离卷积。它可以分解为两个逐通道的卷积和一个逐点的卷积,在保证足够的特征信息的同时,大大减少了网络运行的参数。该思想来自MobileNet[30],通过5 × 5通道逐通道卷积(DW-Conv)提取特征信息。然后,对目标的感受野进行7 × 7通道的空卷积(DW-D-Conv)扩展,同时捕获多尺度的上下文信息。最后,通过1 × 1的逐点卷积得到输出的特征图。

图4中的Dep残差块避免了图像特征信息的丢失,通过跳过链路的方式将信息传递到网络的更深层,增强了背景和图像细节的特征响应

 

公式(1):f 1×1 conv表示常规卷积的卷积核大小为1×1, f 5×5 DW−conv表示卷积核大小为5×5的深通道对通道卷积,f 7×7 DW−D−conv表示深通道对通道的空洞卷积,卷积核大小为7×7,⊗表示元素积;X表示输入特征图,T表示Dep特征增强后的新特征图 

多头注意机制融合结构

多头注意机制[31]将自注意机制产生的查询、键和值映射到多个注意子空间进行注意计算副调制。它可以从不同的表示子空间中学习到独立的相关信息。将各子空间的信息进行组合,可以丰富雾天图像的特征信息。在一个子空间中进行多次自注意计算,产生了Headn和n个头部的多个注意矩阵输出,这使得Headn可以被缝合到特征矩阵中,从而产生了MutilHeadn。

Q、K、V分别是查询、键和计算注意的值,dk表示键的维度,h表示头的个数。wqi, wki和wvi是一个投影矩阵,用于将Q, K和V投影到i维上。

为了更好地捕获图像的关键信息,与多头注意机制在同一特征映射中产生多组Q、K和V不同,本文的多头注意机制仅通过不同的卷积层产生Q、K和V向量。结合Q, K和V,我们可以计算出新的多头注意机制。

如图5所示,整个模块分为两部分,一部分计算特征图的注意机制,另一部分计算样本结果的相同注意机制,最后将两者进行拆分和分类。首先,由Convlayer1卷积得到Q向量,由Convlayer2卷积得到K向量,由Convlayer3卷积得到V向量。同样,对DeConvlayer1生成的特征图进行采样,通过1 × 1的卷积得到Q向量,对DeConvlayer2生成的特征图进行1 × 1的卷积得到K向量,对DeConvlayer3生成的特征图进行1 × 1的卷积得到V向量,用于计算多头注意权值。

最后,将两种注意机制得到的特征映射按位相加并拼接在一起,形成头数为4的多头注意模型。

 

损失函数 

由于雾天图像存在信息损失,CycleGAN很难从循环一致性损失中恢复所有纹理信息。通过引入颜色损失的概念,可以使生成的图像与目标图像在语义上更加相似。这一观点来自Zisserman[28]和Wang[32]。本文在原有损失函数的基础上,增加了循环感知损失和色彩调整损失。

改进后的损失函数为:

式(9)中,loss scp为周期感知损失,Losscolor为色彩调整损失,µ为权重因子。循环感知损失可以提高生成图像与真实图像之间的语义相似度,而颜色调整损失可以避免生成图像颜色与原始图像颜色之间的严重差异,可以引导生成器生成更逼真的图像。

周期性感觉损失

由于网络结构中的对抗性损失和循环一致性损失,图像的详细纹理信息不能完全恢复。因此,为了提高信息恢复的质量,引入了圆感测损耗的概念。首先,我们使用预训练好的VGG16[26]网络模型的第2层和第5层池化层提取特征,并使用L2范数计算模糊图像与重建模糊图像的特征,以及无雾图像与重建无雾图像特征的差异。损失函数如下所示。损失函数的目标是在去模糊过程中保持图像的结构和内容特征,生成更真实的图像。损失函数如下所示:

在式(7)中,GA和GB是两个不同的生成器,x为输入雾状图像,y为清晰图像。其中GB(GA(x))和GA(GB(y))为重构图,Vgg为特征提取器。

色彩调整损失

CycleGAN的损失函数通常会导致生成的除雾图像的亮度和对比度发生变化,甚至产生伪影。为了改善这一现实,受Wang[30]的启发,在整体损失函数中引入了颜色调整的概念来测量无雾图像与重建图像之间的色差。

由于CycleGAN网络不依赖于配对的真实图像,因此这种颜色调整损失函数可以强制生成器生成与雾具有相同颜色分布的图像,并且还可以避免生成图像中的颜色失真和伪影。颜色调整的损失函数为:

 式(8)中,p代表一个像素;ANGLE是一个角度计算函数,用于计算两种颜色之间的角度差。RGB可以看作是颜色的三维矢量。Y表示清晰的图像。GB(GA(x))和GA(GB(y))为重构图像。计算GA中每个像素的颜色向量(GB(y))与图像y中每个像素的颜色向量之间的夹角并求和,得到颜色损失函数。

结论:为了解决图像去雾后图像细节丢失和图像色差问题,本文提出了一种基于CycleGAN的图像去雾生成网络,以提高图像重建后的去雾质量。该网络将U-Net的特征融合思想与deep dep残差块相结合,使生成网络能够更好地捕捉图像背景中的细节,有利于提高生成网络的去雾效果。此外,多头注意机制的引入还可以改善网络的接受野,增强特征的表达能力,平衡因相同而产生的偏差注意机制。同时,在deep depth残差块中引入逐通道卷积和逐点卷积,提取图像的深层细节,同时减少网络计算参数的数量。此外,为了解决图像去雾后的颜色变化问题,本文在损失函数中加入了颜色调整损失,并给出了相应的权重因子。通过计算生成图像中像素点与原始图像之间的差值,生成器可以生成更接近原始图像的去雾图像。在D-Hazy数据集上,ADE-CycleGAN的PSNR达到21.38,比CycleGAN提高8.1%,SSIM达到0.92,比CycleGAN提高12%,与除雾网络相比,在主体性上具有更好的细节保留能力和除雾效果,能够适应不同环境下的除雾任务。然而,与其他网络相比,本文的网络结构更为复杂,参数计算量较大。在未来,可以探索更多的轻量级网络来达到去雾的效果。

注释:

(1)

"Dep" 在这里可能是 "Depth-wise" 的缩写,指的是深度可分离卷积(Depth-wise Separable Convolution)。而 "Residual blocks" 指的是残差块,这是一种神经网络中常用的构建块,用于构建更深层次的网络结构。因此,"Dep residual blocks" 可能是指结合了深度可分离卷积和残差连接的网络块。

深度可分离卷积是一种卷积操作,将标准卷积拆分成两个步骤:首先,对输入的每个通道应用空间卷积;然后,通过逐通道的 1x1 卷积进行跨通道混合。这种分解可以显著减少参数量和计算量,同时保持模型的表现能力。深度可分离卷积在移动设备和嵌入式系统上的应用十分常见,因为它可以提供高效的卷积操作。

残差块是一种通过跨层级连接(即跳跃连接)来构建深层神经网络的方法。这种连接方式可以解决梯度消失和梯度爆炸等问题,有助于训练更深的网络。在残差块中,输入数据通过一个或多个卷积层进行变换,然后与原始输入进行元素级相加,形成最终的输出。

因此,"Dep residual blocks" 可能是指将深度可分离卷积与残差连接相结合的网络块。这种结合方式可以在保持高效计算的同时,构建更深的神经网络,用于各种计算机视觉任务,如图像分类、目标检测等。这样的设计可以在保持模型性能的同时,降低计算和内存需求。

(2)

多头注意机制(Multi-head Attention)是一种在自注意力机制(Self-Attention)的基础上进行扩展的技术,常用于自然语言处理任务和神经网络模型中。

在自注意力机制中,通过计算查询(Query)、键(Key)和值(Value)之间的关联度来对输入序列进行加权聚合。这种机制可以有效地捕捉序列中不同位置之间的依赖关系和重要性。

而多头注意机制则通过并行地使用多个独立的自注意力机制来增加模型的表达能力。每个头注意机制都会学习到不同的查询、键和值的表示,从而捕捉不同的语义信息。最后,通过将多个头注意机制的结果进行拼接或加权求和,得到最终的表示。

多头注意机制的优点包括:
1. 提供了更多的建模能力,能够同时关注不同位置和语义信息。
2. 通过并行计算,加快了模型的训练和推理速度。
3. 通过独立学习每个头的权重,可以自适应地调整每个头的重要性。

多头注意机制在诸如Transformer等深度学习模型中得到广泛应用,为许多自然语言处理任务(如机器翻译、文本生成等)提供了强大的建模能力。

(3)

"1 × 1 逐点卷积操作" 是指一种在深度学习架构中常用的特定卷积操作类型,尤其在用于图像处理任务的神经网络中。这个操作涉及将一个1x1的滤波器(也称为核)应用于输入特征图的每个单独像素或点。

在传统的卷积操作中,滤波器在输入特征图上以特定的窗口大小滑动,执行滤波器权重和窗口内相应输入值之间的点积。结果是生成一个新的特征图,捕捉输入中的某些特征或模式。

然而,当滤波器大小减小到1x1时,实际上是对每个单独像素进行线性变换。这种操作有几个重要的应用:

1. **降维:** 1x1卷积可用于减少特征图中的通道数。这在神经网络架构中不同层之间的过渡时尤其有用。通过应用具有减少通道数的1x1卷积,模型可以学习捕捉最重要的特征,同时降低计算复杂度。

2. **特征交互:** 1x1卷积可用于允许特征图的不同通道相互交互。这被称为通道间交互或跨通道交互。它有助于模型学习不同特征之间的更复杂关系。

3. **调整模型复杂度:** 通过控制1x1卷积滤波器的数量,可以调整模型的复杂性以及其捕捉细节或全局信息的能力。

"逐点" 这个术语强调了每个输入特征图中的像素被独立处理,而不像较大的卷积操作一样考虑邻近像素。这种类型的卷积在 Inception 模块等架构中特别有用,它与其他卷积操作结合使用,有效地捕捉多尺度特征。

总之,"1 × 1 逐点卷积操作" 是在各种深度学习架构中调整特征图维度、促进特征交互以及控制模型复杂性的强大工具。

(4)

UNet是一种用于图像分割任务的卷积神经网络架构。它最初于2015年由Olaf Ronneberger、Philipp Fischer和Thomas Brox在他们的论文"U-Net: Convolutional Networks for Biomedical Image Segmentation"中提出。UNet的名称源自其网络架构的形状,其编码器和解码器部分形象地呈现了一个"U"形。

UNet主要用于处理生物医学图像分割任务,如细胞图像、医学影像中的器官分割等。然而,由于其出色的性能,它已经被广泛用于其他领域的图像分割问题。

UNet的网络结构具有以下特点:

1. **U形结构:** UNet由两部分组成,即编码器和解码器。编码器部分通过一系列卷积和池化层逐渐减小图像的空间分辨率,同时增加特征通道数。解码器部分通过上采样和卷积操作逐渐恢复图像的空间分辨率,同时减少特征通道数。这种结构使得网络能够同时获得全局和局部信息,有助于更好地进行分割。

2. **跳跃连接:** 在解码器部分,UNet使用跳跃连接(skip connections),将编码器中的特征图与解码器中的对应层的特征图连接起来。这有助于在解码器部分保留更多的细节和空间信息,从而改善分割结果。

3. **卷积和上采样:** 解码器部分使用卷积和上采样操作来恢复图像的分辨率。通常使用转置卷积(也称为反卷积)或者上采样操作来实现。

4. **通道数减少:** 解码器中的每一层通常都会减少特征通道的数量,以便减少计算量并生成更精细的特征图。

UNet的设计使其在图像分割任务中表现出色,特别是在具有限样本的情况下。后续的研究工作也基于UNet进行了改进和扩展,产生了许多变体和衍生架构。

(5)

注意力计算(Attention Calculation)是一种在深度学习中广泛应用于处理序列数据、图像数据等任务的技术,旨在为模型赋予能够分配不同权重给输入数据不同部分的能力。通过注意力计算,模型能够在处理数据时更加关注与当前任务相关的信息。

在注意力机制中,模型根据输入数据的不同部分分配不同的注意力权重,从而在处理数据时着重考虑重要的部分。这使得模型能够在不同的任务中更有效地利用信息。注意力计算常见于以下场景:

1. **序列到序列任务(Sequence-to-Sequence):** 在机器翻译、语音合成、文本摘要等任务中,注意力计算可用于生成每个输出元素时将注意力集中在输入序列的不同部分。

2. **自然语言处理(NLP):** 在文本分类、命名实体识别等任务中,注意力计算可以帮助模型在处理每个词语或字符时更好地关注上下文信息。

3. **图像处理:** 在图像描述生成、图像问答等任务中,注意力计算可以使模型关注图像中的不同区域,以生成更准确的描述或回答。

4. **图像分割:** 在图像分割任务中,注意力计算可以帮助模型在不同区域分配不同的注意力,以实现更准确的分割结果。

5. **语音处理:** 在语音识别任务中,注意力计算可以帮助模型关注声学特征的不同部分,从而提高识别准确性。

在注意力计算的经典形式中,一种常见的方法是自注意力(Self-Attention),也称为多头注意力(Multi-Head Attention)。这种方法允许模型将输入中的不同部分相互关联,以便在生成输出时获得更好的上下文信息。

总之,注意力计算是一种有助于模型在处理复杂数据时集中关注重要信息的技术,从而提高模型在各种任务中的表现能力。

(6)

通道注意机制(Channel Attention Mechanism)和像素注意机制(Pixel Attention Mechanism)是两种用于图像处理和计算机视觉任务的注意力机制的变体,用于改善模型在不同层次上对图像信息的关注。

1. **通道注意机制(Channel Attention Mechanism):** 通道注意机制旨在提高卷积神经网络(CNN)在通道维度上的表示能力。在这种机制中,模型通过计算每个通道的重要性权重,使得网络在学习特征表示时更关注有用的通道。通常,这是通过在每个通道上应用全局平均池化来获得通道维度的统计信息,然后使用全连接层或卷积操作来生成通道权重。这样,模型可以在训练过程中决定哪些通道对于特定任务更重要,从而提高特征的表达能力。

2. **像素注意机制(Pixel Attention Mechanism):** 像素注意机制关注图像中每个像素的权重,以便在处理图像时更有针对性地捕获不同区域的信息。与通道注意机制不同,像素注意机制在像素级别上进行操作,而不是通道级别。这使得模型能够在图像中的不同区域分配不同的注意力,从而更好地捕获图像的局部和全局特征。像素注意机制可以通过卷积操作、全连接层或其他方法来计算每个像素的权重。

这两种注意机制的目标都是在深度学习模型中引入一种机制,以提高模型对图像信息的关注能力。通道注意机制有助于更好地学习通道特征的重要性,而像素注意机制则有助于在图像中更准确地分配注意力。

这些注意机制通常会被集成到卷积神经网络的不同层中,以帮助模型在不同层次上进行更精细的特征提取。它们已经在图像分类、目标检测、分割等任务中得到了广泛的应用。

(7)

超采样(Upsampling)是一种图像处理技术,用于增加图像的分辨率。在深度学习中,超采样常常用于图像分割、图像生成等任务,以增加生成图像的细节和清晰度。

在超采样过程中,特征信息是指输入图像或特征图中的某种表征,例如边缘、纹理、颜色等。当将图像进行超采样以增加分辨率时,有两种常见的方法用于保留和增强原始特征信息:

1. **上采样:** 上采样是一种常见的超采样技术,通过插值方法将输入图像的像素值进行放大。在深度学习中,上采样通常通过转置卷积(也称为反卷积)或双线性插值等方法来实现。在上采样过程中,原始特征信息会以相应的方式进行放大,以适应增加的分辨率。然而,纯粹的上采样可能导致生成的图像细节不够清晰。

2. **注意力机制:** 在一些超采样任务中,为了更好地保留特征信息,注意力机制被引入以引导生成的图像更关注重要的特征。通过计算注意力权重,模型可以在生成图像时更有选择地传递特征信息。这可以在超采样过程中帮助生成更真实和清晰的图像。

总之,超采样过程中的特征信息通常是指原始图像或特征图中的某种表征,例如图像的纹理、边缘等。超采样技术可以通过不同的方法来保留和增强这些特征信息,从而产生更高分辨率和更具细节的图像。

(8)

在注意力机制中,"查询"(Query)和"键"(Key)是两个重要的概念,用于计算注意权重,以便在处理序列数据或集合数据时,模型能够分配不同的注意力给不同的元素。

注意机制可以被视为一种从一组值中选择特定值的机制,其中查询和键的关系起到了关键作用:

1. **查询(Query):** 查询是一个向量,代表了模型希望关注的内容或目标。在注意机制中,查询用于衡量输入数据中与该查询最相关的元素。查询可以是任何向量,通常是模型自身生成的或由任务本身定义的。

2. **键(Key):** 键也是一个向量,代表了输入数据中的某种表示。注意机制通过比较查询和键之间的相似性来确定关注的重点。键的作用是在注意机制中为不同的元素赋予不同的权重,这些权重用于计算注意力分布。

在注意机制的常见形式中,通过将查询和键进行内积操作,可以计算出注意权重。这个内积的结果代表了查询和键之间的相似性,然后可以通过归一化操作(例如使用 softmax 函数)将这些相似性值转换为权重分布,用于组合不同元素。

在多头注意机制中,通常会使用多个查询和键,从而允许模型同时关注不同的相关性,以更好地捕捉数据中的信息。

总之,查询和键是注意机制中的两个关键概念,用于计算注意权重,以便模型能够在处理序列或集合数据时更有针对性地关注不同的元素。

(9)

深度可分离卷积(Depthwise Separable Convolution)是一种卷积操作,用于在卷积神经网络(CNN)中减少参数量和计算量,从而提高模型的效率和轻量化。

传统的卷积操作涉及对输入特征图的每个通道应用一个滤波器,然后将所有通道的结果相加以生成输出特征图。这样的卷积操作在通道间进行参数共享,但在空间维度上每个通道都有一个单独的滤波器。而深度可分离卷积则分为两个步骤:深度卷积和逐点卷积。

1. **深度卷积(Depthwise Convolution):** 在这一步骤中,每个输入通道都会被一个单独的滤波器卷积,生成与输入通道数量相等的中间特征图。这一步在通道之间进行参数共享,从而减少了参数数量。

2. **逐点卷积(Pointwise Convolution):** 在这一步骤中,逐点卷积使用1x1的滤波器,对前一步中生成的中间特征图进行卷积。这个操作可以增加通道数,从而更好地捕捉特征之间的关系。

深度可分离卷积的主要优点在于它可以显著减少参数量和计算量,从而使得网络更加轻量化,适用于移动设备和嵌入式系统等资源受限的环境。虽然深度可分离卷积减少了计算复杂性,但可能会稍微降低模型的表现能力,因为它在学习特征之间的复杂关系方面可能会受到一些限制。

总之,深度可分离卷积是一种在卷积神经网络中用于轻量化和加速的操作,通过分为深度卷积和逐点卷积两个步骤,减少了参数数量和计算量,适用于资源受限的环境。

(10)

级联残差网络块(Cascade Residual Network Block)是一种用于深度神经网络的模块结构,旨在提高网络的性能和训练效果。它是在经典的残差网络(ResNet)中引入的一种改进。

在级联残差网络块中,多个残差单元(Residual Unit)被级联连接起来,形成一个块。每个残差单元由两个主要部分组成:主路径(Main Path)和残差路径(Residual Path)。

主路径通常由一系列卷积层、批量归一化层和激活函数组成。它负责对输入进行一系列的非线性变换。

残差路径则通过一个跳跃连接(Shortcut Connection)将输入直接添加到主路径的输出上。这个跳跃连接可以绕过主路径的变换,将输入直接传递到块的输出。

通过级联多个残差单元,级联残差网络块能够更好地捕捉输入之间的复杂关系,并且允许信息在网络中更快地传递。这种结构设计可以有效减缓梯度消失问题,并提高网络的训练速度和性能。

总结起来,级联残差网络块是一种通过级联多个残差单元的结构来提高深度神经网络性能的方法。它在训练过程中可以更好地传递信息,并且减少梯度消失问题的影响。

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值