假期已过半,是否该重拾心情,继续我们的AI事业啦

首先预祝各位因知识结缘的你我他,在新的一年里都能成长为理想中的样子!


也感谢你们的每份关注~每次阅读~每次分享~每次点赞-~每次赞赏,我们都充满感激,新的一年也将以此为动力,继续努力。

今天小编也做了一回标题党,见谅哈!还是希望大家能在春节里身心放松,多多陪伴亲人朋友。这样才能在节后以全新的面貌、全新的心情投入到自己的事业中,你们觉得呢?莫要在该放松的时候焦躁了,莫要在该陪伴亲人朋友的时候还心系工作和学习,俗话道:“什么时间做什么事”。


本文对最近一个月发布的Python教程、智能问答等知识总结,以便节后大家可以轻松的联想起之前之所学,顺利的前行。


Python

1、学习 | Python之简介&安装&第一个Python程序

2、学习 | Python之数据结构和流程语句

3、学习 | Python之函数——实现代码抽象的利器

4、学习 | Python之高级特性:如何写出少而有效的代码

5、学习 | Python之高抽象的编程范式(1)——高阶函数

6、学习 | Python之高抽象的编程范式(2)

真是最浅显易懂的Git Python教程啦

资源 | 2017年GitHub中Top 30开源机器学习项目

未完待续。。。。。

QA

1、AI人才发展分析 | 2017年全球人工智能人才报告(附73页完整版PDF)

2、十个经典Chatbot框架

3、对话系统原理和实践

4、年末收藏福利 | 百度的中文问答数据集WebQA

5、干货 | 卷积神经网络入门这一篇就够了

6、seq2seq和attention如何应用到文档自动摘要

7、论文:记忆网络之Gated End-to-End Memory Networks

8、认知科学数据集大列表 Center for Data on the Mind

9、【干货】程序员常访问的国外技术交流网站汇总——附NLP入门资料链接

10、[深入浅出] LSTM神经网络

11、FP-growth算法:高效频繁项集挖掘

12、BAT人工智能生态时局图:全面战争爆发前夜

13、Tomas Mikolov论文简评:从Word2Vec到FastText

14、推荐 | 中文文本标注工具Chinese-Annotator(内附多个开源文本标注工具)

15、fastText 之其源码分析

16、深度长文:如何制造具有自我意识、无限接近人类的的机器人?

17、自然语言对话引擎(技术类)

18、分享 | 由0到1走入Kaggle-入门指导 (长文、干货)

往期干货

人工智能和机器学习入门

长文|一文读懂什么是机器学习

数据科学与机器学习引领持续创新

人工智能之父艾伦·麦席森·图灵

[转]阿里智能人机交互的核心技术解析

[英语]关于人生的10个残酷真相, 希望你越早知道越好

音箱竟然能听懂普通话,原来是因为它

官宣:谷歌 AI 中国中心在北京成立

既生Mahout,何生Spark MLlib ?

资源共享

机器学习资源共享

书籍 | 程序人生充电10本书

史上最全的机器学习资料(下)

史上最全的机器学习资料(上)

书单下载 | 关于算法、编程、机器学习等书籍,也许正是你所需要的

自然语言处理入门资料推荐

干货|开放数据集

干货|免费文本语料训练数据集

机器学习

数据分析Python工具Jupter Notebook快速部署

机器学习之Logistic Regression

常用机器学习算法之线性回归

机器学习分类算法之k-近邻算法

机器学习之K-近邻算法代码分析

一文实现0~9手写数字识别系统

机器学习之决策树分类和预测算法原理

机器学习之朴素贝叶斯分类器

机器学习之理解支持向量机SVM

机器学习之聚类算法——K-Means算法

利用Python进行数据分析之Numpy

机器学习之聚类算法/Bisecting K-Means算法

机器学习算法中不得不知的欠拟合与过拟合问题

自然语言处理NLP和QA

NLP之句法分析入门

语料库之宾州中文树库8.0

Stanford SPIED是什么?

智能机器人之心:DeepQA近距离观察

短视频 | 10分钟解读智能问答开源项目YodaQA架构原理

短视频 | 问答开源项目解读之整体代码流程和问题分析

英文智能问答之OpenEphyra

理解智能问答系统(Ⅰ)

智能问答开源项目之YodaQA(Ⅱ)

智能问答之使用UIMA进行文本挖掘(Ⅲ)

智能问答之答案抽取(Ⅳ)

TF-IDF不容小觑

LR如何在语言理解NLU中实现文本分类

文本特征工程之N-Gram

文本分类特征提取之Word2Vec

常见文本相似度量方法总结

从最大方差来看主成分分析PCA

浅入深出之大话SoftMax

Logistic Regression Models分析交互式问答[译]

总结 | 常用文本特征选择



学习交流,欢迎加入以下微信群

长按二维码

关注我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值