安装anaconda+pytorch环境+paddle环境

本文详细介绍了如何利用Anaconda在Windows上创建并激活PyTorch和PaddlePaddle的深度学习环境,无需额外安装CUDA和cudnn。作者提供了检查电脑配置、安装步骤以及解决PyCharm加载环境问题的方法,并验证了CUDA和cudnn版本。
摘要由CSDN通过智能技术生成

安装anaconda+pytorch环境+paddle环境

(6条消息) 利用Anaconda安装pytorch和paddle深度学习环境+pycharm安装---免额外安装CUDA和cudnn(适合小白的保姆级教学)_paddle pycharm_炮哥带你学的博客-CSDN博客

炮哥带你学真的是保姆级教学,一学就会。记录一下我的学习过程。

anaconda之前我就装好了,所以这一步省略了。

一:检查了自己的电脑配置 

电脑右击-->管理-->设备管理器-->显示适配器

有显卡驱动的,可以直接在桌面右键,找到英伟达驱动控制面板

 

官方驱动 | NVIDIA

win+R 输入cmd

nvidia-smi

 二:pytorch环境安装

open Terminal进入,创建环境,激活环境,清华源,打开pytorch的官网。 

这里是因为我之前已经搭好环境了,在pytorch环境下,点open Terminal,就等于是激活环境这个操作。没搭好的童鞋可以在base环境下点open Terminal,再执行以下操作。

conda create -n pytorch python=3.8
conda activate pytorch
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3

我安装的是11.3版本的。

三:paddle环境安装

和pytorch环境安装一样。

先创建环境,激活环境,打开paddlepaddle的官网

conda create -n paddle python=3.8
conda activate paddle
conda install paddlepaddle-gpu==2.4.2 cudatoolkit=11.7 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge

我安装的是11.7。

四:pycharm安装

 pycharm网址

我下载的也是社区版pycharm,但是我安装好,加载环境的时候,出现了这个问题Conda executable is not found错误。

 我的解决方法是:

选择anaconda安装的位置,然后Scripts\conda.exe。然后按一下Load Environments。

 

 

然后就可以加载自己已经搭建好的环境了。我也不知道是什么道理,我也试了网上其他的方法,就这个方法成功了。

五: 验证CUDA和cudnn版本

使用了"炮哥带你学"的代码验证,成功下车。

#pytorch环境下
import torch
print(torch.cuda.is_available())
print(torch.backends.cudnn.is_available())
print(torch.cuda_version)
print(torch.backends.cudnn.version())

#paddle环境下
import paddle
print(paddle.utils.run_check())

好的,那我们开始吧! 首先,YOLO(You Only Look Once)是一种基于深度学习的物体检测算法,它通过卷积神经网络直接在图像上完成物体检测和定位,具有速度快、精度高等优点,因此在实际应用中得到了广泛的应用。 YOLOv5是YOLO系列最新的版本,相对于之前的版本,它在网络结构、数据增强、学习策略等方面进行了优化,提高了检测的精度和速度。下面我们来学习一下YOLOv5的使用。 1. 安装YOLOv5 YOLOv5可以通过GitHub上的开源项目进行下载和安装,具体步骤如下: 1)克隆YOLOv5项目到本地 ``` git clone https://github.com/ultralytics/yolov5.git ``` 2)安装相关依赖 ``` pip install -r requirements.txt ``` 2. 训练自己的数据集 训练一个物体检测模型需要准备好标注好的数据集,然后通过训练模型来学习如何检测这些物体。YOLOv5支持各种不同的数据格式,包括COCO、Pascal VOC等。 在准备好数据集之后,可以通过以下命令来训练模型: ``` python train.py --img 640 --batch 16 --epochs 50 --data coco.yaml --cfg models/yolov5s.yaml --weights '' --name yolov5s_results ``` 其中,--img指定输入图像大小,--batch指定批量大小,--epochs指定训练轮数,--data指定数据集的配置文件,--cfg指定模型的配置文件,--weights指定预训练模型的权重,--name指定训练结果保存的文件夹名称。 3. 测试模型 训练完成之后,可以使用训练好的模型对新的图像进行检测。可以使用以下命令来进行测试: ``` python detect.py --source 0 --weights yolov5s_results/weights/best.pt --conf 0.25 ``` 其中,--source指定输入图像或视频的路径,0表示使用摄像头输入,--weights指定训练好的模型权重,--conf指定置信度的阈值,低于这个阈值的检测结果将被忽略。 4. 导出模型 最后,可以将训练好的模型导出到ONNX格式或TorchScript格式,以便在其他平台上使用。可以使用以下命令来导出模型: ``` python models/export.py --weights yolov5s_results/weights/best.pt --img-size 640 --batch-size 1 ``` 其中,--weights指定训练好的模型权重,--img-size指定输入图像大小,--batch-size指定批量大小。 这就是使用YOLOv5进行物体检测的基本流程。当然,在实际应用中,还需要根据具体情况进行参数调整和优化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值