用python+numpy+matplotalib实现梯度下降法

这个阶段一直在做和梯度一类算法相关的东西,索性在这儿做个汇总,

一、算法论述

梯度下降法(gradient  descent)别名最速下降法(曾经我以为这是两个不同的算法-.-),是用来求解无约束最优化问题的一种常用算法。下面以求解线性回归为题来叙述:

设:一般的线性回归方程(拟合函数)为:(其中的值为1)

  

这一组向量参数选择的好与坏就需要一个机制来评估,据此我们提出了其损失函数为(选择均方误差):

我们现在的目的就是使得损失函数取得最小值,即目标函数为:

如果取到了0,意味着我们构造出了极好的拟合函数,也即选择出了最好的值,但这基本是达不到的,我们只能使得其无限的接近于0,当满足一定精度时停止迭代。

那么问题来了如何调整使得取得的值越来越小呢?方法很多,此处以梯度下降法为例:

分为两步:(1)初始化的值。

                  (2)改变的值,使得按梯度下降的方向减少。

值的更新使用如下的方式来完成:

        

其中为步长因子,这里我们取定值,但注意如果取得过小会导致收敛速度过慢,过大则损失函数可能不会收敛,甚至逐渐变大,可以在下述的代码中修改的值来进行验证。后面我会再写一篇关于随机梯度下降法的文章,其实与梯度下降法最大的不同就在于一个求和符号。

 

二、代码实现:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
from matplotlib import style


#构造数据
def get_data(sample_num=10000):
    """
    拟合函数为
    y = 5*x1 + 7*x2
    :return:
    """
    x1 = np.linspace(0, 9, sample_num)
    x2 = np.linspace(4, 13, sample_num)
    x = np.concatenate(([x1], [x2]), axis=0).T
    y = np.dot(x, np.array([5, 7]).T)  
    return x, y
#梯度下降法
def GD(samples, y, step_size=0.01, max_iter_count=1000):
    """
    :param samples: 样本
    :param y: 结果value
    :param step_size: 每一接迭代的步长
    :param max_iter_count: 最大的迭代次数
    :param batch_size: 随机选取的相对于总样本的大小
    :return:
    """
    #确定样本数量以及变量的个数初始化theta值
    m, var = samples.shape
    theta = np.zeros(2)
    y = y.flatten()
    #进入循环内
    print(samples)
    loss = 1
    iter_count = 0
    iter_list=[]
    loss_list=[]
    theta1=[]
    theta2=[]
    #当损失精度大于0.01且迭代此时小于最大迭代次数时,进行
    while loss > 0.001 and iter_count < max_iter_count:
        loss = 0
        #梯度计算
        theta1.append(theta[0])
        theta2.append(theta[1])
        for i in range(m):
            h = np.dot(theta,samples[i].T)   
        #更新theta的值,需要的参量有:步长,梯度
            for j in range(len(theta)):
                theta[j] = theta[j] - step_size*(1/m)*(h - y[i])*samples[i,j]
        #计算总体的损失精度,等于各个样本损失精度之和
        for i in range(m):
            h = np.dot(theta.T, samples[i])
            #每组样本点损失的精度
            every_loss = (1/(var*m))*np.power((h - y[i]), 2)
            loss = loss + every_loss

        print("iter_count: ", iter_count, "the loss:", loss)
        
        iter_list.append(iter_count)
        loss_list.append(loss)
        
        iter_count += 1
    plt.plot(iter_list,loss_list)
    plt.xlabel("iter")
    plt.ylabel("loss")
    plt.show()
    return theta1,theta2,theta,loss_list
def painter3D(theta1,theta2,loss):
    style.use('ggplot')
    fig = plt.figure()
    ax1 = fig.add_subplot(111, projection='3d')
    x,y,z = theta1,theta2,loss
    ax1.plot_wireframe(x,y,z, rstride=5, cstride=5)
    ax1.set_xlabel("theta1")
    ax1.set_ylabel("theta2")
    ax1.set_zlabel("loss")
    plt.show()
def predict(x, theta):
    y = np.dot(theta, x.T)
    return y        
if __name__ == '__main__':
    samples, y = get_data()
    theta1,theta2,theta,loss_list = GD(samples, y)
    print(theta)  # 会很接近[5, 7] 
    painter3D(theta1,theta2,loss_list)
    predict_y = predict(theta, [7,8])
    print(predict_y)

三、绘制的图像如下:

迭代次数与损失精度间的关系图如下:步长为0.01


变量与损失函数loss之间的关系:(从初始化之后会一步步收敛到loss满足精度,之后会变的稳定下来)


下面我们来看一副当步长因子变大后的图像:步长因子为0.5(很明显其收敛速度变缓了)



当步长因子设置为1.8左右时,其损失值已经开始震荡


          


  • 2
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
好的,我可以给你一个简单的手写数字识别和梯度下降法Python实现,但是需要注意的是,这只是一个示例,实际的手写数字识别模型会更复杂,需要更多的算法和技术。 首先,我们需要准备手写数字数据集。MNIST数据集是一个经典的手写数字数据集,你可以从网上下载到该数据集。 然后,我们需要实现一个简单的神经网络模型。这里我们使用一个3层的全连接神经网络,其中输入层有784个神经元,中间层有128个神经元,输出层有10个神经元,分别对应10个数字。 ```python import numpy as np class NeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.weights1 = np.random.normal(scale=0.1, size=(input_size, hidden_size)) self.weights2 = np.random.normal(scale=0.1, size=(hidden_size, output_size)) def forward(self, x): hidden = np.dot(x, self.weights1) hidden = np.maximum(0, hidden) # ReLU activation output = np.dot(hidden, self.weights2) return output def predict(self, x): return np.argmax(self.forward(x), axis=1) ``` 接下来,我们需要实现梯度下降法来训练我们的神经网络模型。这里我们使用交叉熵损失函数和反向传播算法来计算梯度。 ```python def softmax(x): exps = np.exp(x - np.max(x, axis=1, keepdims=True)) return exps / np.sum(exps, axis=1, keepdims=True) def cross_entropy_loss(y_pred, y_true): m = y_true.shape[0] p = softmax(y_pred) log_likelihood = -np.log(p[range(m), y_true]) loss = np.sum(log_likelihood) / m return loss def backpropagation(x, y_true, y_pred, hidden, nn, learning_rate): m = y_true.shape[0] grad_y_pred = softmax(y_pred) grad_y_pred[range(m), y_true] -= 1 grad_y_pred /= m grad_weights2 = np.dot(hidden.T, grad_y_pred) grad_hidden = np.dot(grad_y_pred, nn.weights2.T) grad_hidden[hidden <= 0] = 0 grad_weights1 = np.dot(x.T, grad_hidden) nn.weights1 -= learning_rate * grad_weights1 nn.weights2 -= learning_rate * grad_weights2 def train(x_train, y_train, nn, learning_rate, num_epochs): for epoch in range(num_epochs): y_pred = nn.forward(x_train) loss = cross_entropy_loss(y_pred, y_train) if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss:.3f}") hidden = np.dot(x_train, nn.weights1) hidden = np.maximum(0, hidden) backpropagation(x_train, y_train, y_pred, hidden, nn, learning_rate) ``` 最后,我们可以用训练好的模型来预测手写数字的标签。 ```python import gzip import pickle # Load data with gzip.open("mnist.pkl.gz", "rb") as f: train_data, _, test_data = pickle.load(f, encoding="latin1") x_train, y_train = train_data # Normalize data mean = np.mean(x_train) std = np.std(x_train) x_train = (x_train - mean) / std # Train model nn = NeuralNetwork(784, 128, 10) train(x_train, y_train, nn, learning_rate=0.1, num_epochs=1000) # Predict test data x_test, y_test = test_data x_test = (x_test - mean) / std y_pred = nn.predict(x_test) accuracy = np.mean(y_pred == y_test) print(f"Test Accuracy: {accuracy:.3f}") ``` 这样,我们就可以用梯度下降法训练一个简单的神经网络模型来识别手写数字了。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值