进化策略算法:原理、实现与性能比较
1. 引言
在优化问题中,进化策略(ES)是一类重要的元启发式算法。本文将详细介绍几种不同的进化策略算法,包括 $(µ + λ)$ ES、$(µ, λ)$ ES、$(µ, α, λ, β)$ ES 以及自适应的 $(µ + λ)$ ES 和 $(µ, λ)$ ES,分析它们的原理、实现步骤,并比较它们的性能。
2. $(µ + λ)$ ES 算法
2.1 算法原理
$(µ + λ)$ ES 算法使用 $µ$ 个父代个体作为初始种群。在每次迭代中,通过父代个体的重组生成 $λ$ 个子代个体。然后,将 $µ$ 个父代和 $λ$ 个子代合并,从这个集合中选择最优的 $µ$ 个个体作为下一代的父代。
2.2 算法步骤
以下是 $(µ + λ)$ ES 算法的一般步骤:
1. 参数配置 :设置 $µ$、$λ$、维度 $d$、上下界 $lb$ 和 $ub$、迭代计数器 $k$ 以及最大迭代次数 $k_{max}$。
2. 初始化粒子和标准差 :为每个父代个体随机初始化位置和标准差。
3. 评估初始粒子 :计算每个父代个体的适应度值。
4. 选择父代 :随机选择两个父代个体。
5. 重组 :对选择的父代个体进行重组,生成子代个体。
6. 生成变异向量 :根据子代个体的标准差生成变异向量。
7.
超级会员免费看
订阅专栏 解锁全文
3561

被折叠的 条评论
为什么被折叠?



