7、进化策略算法:原理、实现与性能比较

进化策略算法:原理、实现与性能比较

1. 引言

在优化问题中,进化策略(ES)是一类重要的元启发式算法。本文将详细介绍几种不同的进化策略算法,包括 $(µ + λ)$ ES、$(µ, λ)$ ES、$(µ, α, λ, β)$ ES 以及自适应的 $(µ + λ)$ ES 和 $(µ, λ)$ ES,分析它们的原理、实现步骤,并比较它们的性能。

2. $(µ + λ)$ ES 算法

2.1 算法原理

$(µ + λ)$ ES 算法使用 $µ$ 个父代个体作为初始种群。在每次迭代中,通过父代个体的重组生成 $λ$ 个子代个体。然后,将 $µ$ 个父代和 $λ$ 个子代合并,从这个集合中选择最优的 $µ$ 个个体作为下一代的父代。

2.2 算法步骤

以下是 $(µ + λ)$ ES 算法的一般步骤:
1. 参数配置 :设置 $µ$、$λ$、维度 $d$、上下界 $lb$ 和 $ub$、迭代计数器 $k$ 以及最大迭代次数 $k_{max}$。
2. 初始化粒子和标准差 :为每个父代个体随机初始化位置和标准差。
3. 评估初始粒子 :计算每个父代个体的适应度值。
4. 选择父代 :随机选择两个父代个体。
5. 重组 :对选择的父代个体进行重组,生成子代个体。
6. 生成变异向量 :根据子代个体的标准差生成变异向量。
7.

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值