题目
给定一个整数数组 nums
,返回区间和在 [lower, upper]
之间的个数,包含 lower
和 upper
。
区间和 S(i, j)
表示在 nums
中,位置从 i
到 j
的元素之和,包含 i
和 j
(i
≤ j
)。
说明:
最直观的算法复杂度是 O(n2) ,请在此基础上优化你的算法。
示例:
输入: nums =[-2,5,-1]
, lower =-2
, upper =2
, 输出: 3 解释: 3个区间分别是:[0,0]
,[2,2]
,[0,2],
它们表示的和分别为:-2, -1, 2。
解法
class Solution {
public int countRangeSum(int[] nums, int lower, int upper) {
if(nums == null || nums.length == 0){
return 0;
}
int count = 0;
long[] res = new long[nums.length];
long sum = 0;
for(int i = 0; i < nums.length; i++){
if(lower<= nums[i] && nums[i]<=upper){//单个数值在所给区间范围
count++;
}
sum += nums[i];
res[i] = sum;
}
for(int i = 1; i < nums.length; i++){
if(lower<= res[i] && res[i]<=upper){//从第0个到第i个元素之和在所给区间范围
count++;
}
for(int j = 0; j < i-1; j++){
long z = res[i] - res[j];
if(lower<= z && z<=upper){ //从第i(i>0)个到第j个元素之和在所给区间范围
count++;
}
}
}
return count;
}
}