这是斐波那契查找的理解难点。
这是为了能正确递归计算mid值,看下图可发现 f[k]-1 = (f[k-1] + f[k-2]) - 1 = (f[k-1]-1) + 1 + (f[k-2]-1),中间的1就是我们二分的锚点mid,如果目标在左区,数组长度就缩到(f[k-1]-1),如果在右区,数组长度就缩到(f[k-2]-1),否则就等于mid完成查找。而(f[k-1]-1)又能拆成(f[k-2]-1)+1+(f[k-3]-1),这样递归分割下去就能不断的缩小区间直至找到目标。
假如扩充到f[k],f[k] = f[k - 1] + f[k - 2],少了一个mid点。
假如扩充到f[k + 1]点,f[k + 1] = f[k] + f[k - 1],少了一个mid点。
假如扩充到f[k] + 1点,f[k] + 1 = f[k - 1] + 1 + f[k - 2],这里mid点有了,但是接下来f[k - 1]和f[k - 2]都无法拆分出mid点。