算法:多数元素,多种解法

 

前言:

以前做数学题的时候,老师说:你们学习多种解题方法。遇到类似不同的问题,你都会了,这样能提高解题能力。如果你写出多种解法,面试官会对你刮目相看。

下面一题,我们将用多种解法实现,是面试中常见的一题。

题目:
给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指,在数组中出现次数,大于  n / 2 的元素。
例子:int a[3] =  {1, 2, 2} ,多数元素是 2 。 

你可以假设数组是非空的,并且给定的数组中,总是存在多数元素。

解法一:哈希表

动画演示:

图片

代码如下:

图片

哈希表方法:一边遍历,一边计数,一边找众数,并不是先计数完,再去遍历一次找最大值。

时间复杂度:O(n) ;空间复杂度:O(n)
 

解法二:排序

代码如下:

对数组排序后,直接可以通过下标来判断众数,这个方法简单。

时间复杂度:O(nlogn);空间复杂度:O(nlogn)
 

解法三:分治

动画演示:

图片

代码如下:
 

图片

先将数组划分,然后分别找到左边的众数和右边的众数,然后根据找到的众数和数组长度的 1 / 2 进行比较。

时间复杂度:O(nlogn)   ;空间复杂度:O(nlogn)

 

解法4:Boyer- Moore算法

思想:我们把众数记为 +1,把其他数记为  -1,将它们全部加起来,显然和大于 0。从结果本身,我们可以看出,众数比其他数多。

 

图片

代码如下:

图片

 

遍历数组 nums 中的所有元素,对于每个元素 x,在判断 x 之前,如果 count 的值为 0,先将 x 的值赋予 more,随后我们判断 x:

    如果 x 与 more相等,那么计数器 count 的值增加 1;
    如果 x 与 more不等,那么计数器 count 的值减少 1。

时间复杂度:O(n);空间复杂度:O(1)
 

絮叨

面试过程中,选择你熟悉的算法中,时间和空间复杂度最优的解法,平时训练多种方法都要懂,提高算法能力。
 


专注后台开发相关技术,广度深度并存,干货情怀同在。
微信搜索【晨梦思雨】关注这个不一样的程序员。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页