动态规划之70爬楼梯

该问题是一个典型的动态规划问题,解决方法是使用一个数组dp,其中dp[i]表示到达第i层楼梯的方法数。初始化dp[0]=0,dp[1]=1,dp[2]=2,然后通过递推公式dp[i]=dp[i-1]+dp[i-2]计算后续的值,最后返回dp[n]作为答案。
摘要由CSDN通过智能技术生成
题目:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

题目链接:70. 爬楼梯 - 力扣(LeetCode)

示例:

解法: 

假如爬到第 i 层,那要么是从第 i-1 层爬上来的,要么是从第 i-2 爬上来的。

class Solution {
public:
    int climbStairs(int n) 
    {
        vector<int> dp(n+1);//n+1个数,从0到n
        
        if(n<=2) return n;
        dp[0]=0;
        dp[1]=1;
        dp[2]=2;
        
        for(int i=3;i<=n;i++) dp[i]=dp[i-1]+dp[i-2];//递推公式

        return dp[n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值