题目:
给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
题目链接:518. 零钱兑换 II - 力扣(LeetCode)
示例:
回顾:
首先再回顾一下01背包的核心代码:
for(int i = 0; i < weight.size(); i++)
{ // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--)
{ // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。
而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++)
{ // 遍历物品
for(int j = weight[i]; j <= bagWeight ; j++)
{ // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
解法:
这个递推公式和494目标和是一样的,即求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];
遍历方式:
(1)先遍历物品,再遍历背包容量:是求组合数,也就是物品的前后顺序不重要。
(2)先遍历背包容量,再遍历物品:是求排列数,也就是物品的前后顺序重要。
class Solution {
public:
int change(int amount, vector<int>& coins)
{
vector<int>dp(amount+1,0);//dp[j]:凑成j元最多方式数
dp[0]=1;
//先遍历物品,再遍历背包容量
for(int i=0;i<coins.size();i++)
{
for(int j=coins[i];j<=amount;j++)
{
dp[j] += dp[j - coins[i]];//求解法数和求背包最大价值总和是不一样的
}
}
return dp[amount];
}
};