动态规划完全背包之518零钱兑换 II

文章介绍了如何使用动态规划解决零钱兑换II问题,重点在于理解完全背包的概念和递推公式。通过两次遍历,先遍历物品再遍历背包容量,计算出凑成给定金额的硬币组合数。核心代码展示了如何更新动态规划数组以得到最终答案。
摘要由CSDN通过智能技术生成
题目:

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。

假设每一种面额的硬币有无限个。 

题目数据保证结果符合 32 位带符号整数。

题目链接:518. 零钱兑换 II - 力扣(LeetCode)

示例:

 

回顾:

首先再回顾一下01背包的核心代码:

for(int i = 0; i < weight.size(); i++) 
{ // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) 
    { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:

// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) 
{ // 遍历物品
    for(int j = weight[i]; j <= bagWeight ; j++) 
    { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    }
}
解法:

这个递推公式和494目标和是一样的,即求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];

遍历方式:

(1)先遍历物品,再遍历背包容量:是求组合数,也就是物品的前后顺序不重要。

(2)先遍历背包容量,再遍历物品:是求排列数,也就是物品的前后顺序重要。

class Solution {
public:
    int change(int amount, vector<int>& coins) 
    {
        vector<int>dp(amount+1,0);//dp[j]:凑成j元最多方式数
        dp[0]=1;
        //先遍历物品,再遍历背包容量
        for(int i=0;i<coins.size();i++)
        {
            for(int j=coins[i];j<=amount;j++)
            {
                dp[j] += dp[j - coins[i]];//求解法数和求背包最大价值总和是不一样的
            }
        }
        return dp[amount];

    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值