同码小数求和问题

本文介绍了如何解决一个数学问题,即计算s(d,n)和w(d,n)的和,其中涉及小数位的累加和加权累加。通过非精确和精确计算两种方法,利用循环和数组处理小数位的逐位相加,并在最后统计两个和的对应位数字相同的情况。文章提供了完整的算法思路和程序代码。" 101612539,8793226,使用Peach Fuzz测试PNG文件解析,"['运维', '文件解析', 'Peach', '010 Editor']
摘要由CSDN通过智能技术生成

问题描述:
s(d,n)= 0.d+0.dd+0.ddd+…+0.dd…d
w(d,n)=0.d+2×0.dd+3×0.ddd+…+n×0.d…d
(两和式为n项之和,其中第k项小数点后有k个数字d,加权和第k项的权系数为k)
输入整数d(1≤d≤9),n(1≤n<10000),计算并输出和s(d,n)与w(d,n)。
设计思想:
1、非精确计算
设置累加器s,w分别求二个累加和。 
设置关于i(1~n)的循环实施枚举累加操作。
s的前后项关系:前一项为t(初值为0 ),其后一项显然为:
      t=t/10+0.1*d;
加权和w的每一项在t的基础上乘加权系数i,即累加t*i。

	std::cout << "请分别输入的d,n(用空格隔开):";
    std::cin >> d >> n;
    for (int i = 1; i <= n; i++)    // 累加求和
    {
        t = 0.1 * t + 0.1 * d;      // 由前一项得到当前项,如0.1→0.11 
        s += t;
        w += t * i;
    }
    std::cout << "S(" << d << "," << n << ")=" << s << "\n";   // 输出和s
    std::cout << "W(" << d << "," << n << ")=" << w << "\n";   // 输出加权和w

2、精确计算
我们先来看一下,竖式加法是怎么样加的。如图,竖式加法是按位从后往前同位相加(再加进位)的。
竖式加法原理
具体思路:
设置一维数组s[],s[i]表示和s的小数点后第i位,s[0]为和s的整数部分;同理设置一维数组w[],w[i]表示加权和w的小数点后第i位,w[0]为加权和w 的整数部分。  
1)对应位累加求和
  for(t = 0, i = n; i >= 1; i --)
  { t=t+i; s[i]=(n+1-i)*d; w[i]=t*d; }

2)调整:从后向前进位
   s[i-1]=s[i-1]+s[i]/10;
   s[i]=s[i]%10;    
3) 输出和s与w

	std::cout << "请分别输入的d,n(用空格隔开):";
    std::cin >> d >> n;
    for (t=0,i=n;i>=1;i--)    //  对S,W分位求和
    {
        t = t + i;
        s[i] = (n + 1 - i) * d;
        w[i] = t * d;
    }
    for (i=n;i>=1;i--)       //  从后往前逐一进位
    {
        s[i - 1] = s[i - 1] + s[i] / 10;
        s[i] = s[i] % 10;
        w[i - 1] = w[i - 1] + w[i] / 10;
        w[i] = w[i] % 10;
    }

现在在之前的问题上再加一个问题,同时统计:在s(d,n)与w(d,n)的n个小数位中, s与w共有多少个小数位对应位的数字相同?
定义一个变量m,用来统计s与w对应位相同的个数,循环遍历数组s[]和w[],在循环中判断s[i]与w[i]是否相等,如果相等m自增一。

	for (m = 0, i = 1; i <= n; i++)       //  比较并统计s与w数字相同的位数
    {
        if (s[i] == w[i]) {
            m++;
        }
    }

下面是整个程序的完整代码。

#include <iostream>
//非精确计算
void sum_simple () {
    int d,n;
    double s = 0, w = 0, t = 0;
    std::cout << "请分别输入的d,n(用空格隔开):";
    std::cin >> d >> n;
    for (int i = 1; i <= n; i++)       //  累加求和
    {
        t = 0.1 * t + 0.1 * d;
        s += t;
        w += t * i;
    }
    std::cout << "S(" << d << "," << n << ")=" << s << "\n";
    std::cout << "W(" << d << "," << n << ")=" << w << "\n";
}
//精确计算
void sum_strict () {
    int d, n, i, t, m;
    int s[100] = { 0 }, w[100] = { 0 };
    std::cout << "请分别输入的d,n(用空格隔开):";
    std::cin >> d >> n;
    for (t=0,i=n;i>=1;i--)    //  对S,W分位求和
    {
        t = t + i;
        s[i] = (n + 1 - i) * d;
        w[i] = t * d;
    }
    for (i=n;i>=1;i--)       //  从后往前逐一进位
    {
        s[i - 1] = s[i - 1] + s[i] / 10;
        s[i] = s[i] % 10;
        w[i - 1] = w[i - 1] + w[i] / 10;
        w[i] = w[i] % 10;
    }
    for (m = 0, i = 1; i <= n; i++)       //  比较并统计s与w数字相同的位数
    {
        if (s[i] == w[i]) {
            m++;
        }
    }
    std::cout << "S(" << d << "," << n << ")=" << s[0] << ".";     //  输出s
    for (int i = 1; i <= n; i++) {
        std::cout << s[i];
    }
    std::cout << "\n";
    std::cout << "W(" << d << "," << n << ")=" << w[0] << ".";     //  输出w
    for (int i = 1; i <= n; i++) {
        std::cout << w[i];
    }
    std::cout << "\n";
    std::cout << "s与w数字相同的位数数目 = " << m << "\n";
}

int main()
{
    sum_simple();
    sum_strict();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值