数学甜点001 | 数论系列-无穷递降法

揭开庐山真面目

今天做题时看到了这样一道题:
证明:存在正整数n,使得方程 1 a + 1 b + 1 c + 1 a b c = n a + b + c \dfrac {1}{a}+\dfrac {1}{b}+\dfrac {1}{c}+\dfrac {1}{abc}=\dfrac {n}{a+b+c} a1+b1+c1+abc1=a+b+cn有无穷多组正整数解 ( a , b , c ) (a,b,c) (a,b,c)

分析

这题是本人在学习无穷递降法时遇到的,于是自然而然地就用了这种方法解出了本题。下面给出我对这一方法的理解:(由于本人还是一名学生,水平不足,下文可能有勘误,请大家多多在评论区指正,谢谢!

无穷递降法是证明不定方程无解的一种方法。其步骤为:假设方程有解,并设 x x x最小的解

x x x推出一个更小的解 y y y,从而与X的最小性相矛盾。所以,方程无解。

个人认为,这种方法实为巧妙,因为它包含了一种很“高端”的思想:极限思想。这种方法通常用于证明一个不定方程没有一种特殊形式的解,但是如果到了这道题,用处却恰恰相反——由于题目未给出解的形式,因此利用无穷递降法证明这个方程有无穷个解便是本题的关键。

思路大概就是这样:

先找到一组解 ( a , b , c ) (a,b,c) (a,b,c),然后可以由它根据一种固定的“套路”推出一组更小的解 ( a 1 , b 1 , c 1 ) (a_{1},b_{1},c_{1}) (a1,b1,c1),接着又可以由它根据这种固定的“套路”推出一组更加小的解 ( a 2 , b 2 , c 2 ) (a_{2},b_{2},c_{2}) (a2,b2,c2),以此类推。

由此可见,关键在于看穿这道题的构造方法。

答案的“标准解法”

这样的正整数存在。

a = b = c = 1 a=b=c=1 a=b=c=1,则 m = 12 m=12 m=12,令

1 a + 1 b + 1 c + 1 a b c − 12 a + b + c = p ( a , b , c ) a b c ( a + b + c ) \dfrac {1}{a}+\dfrac {1}{b}+\dfrac {1}{c}+\dfrac {1}{abc}-\dfrac {12} {a+b+c}=\dfrac {p(a,b,c)}{abc(a+b+c)} a1+b1+c1+abc1a+b+c12=abc(a+b+c)p(a,b,c)

其中 p ( a , b , c ) = ∑ c y c a 2 ( b + c ) + a + b + c − 9 a b c p(a,b,c)=\sum_{cyc}a^{2}\left(b+c\right)+a+b+c-9abc p(a,b,c)=cyca2(b+c)+a+b+c9abc.

( x , a , b ) (x,a,b) (x,a,b)是满足 p ( a , b , c ) = 0 p(a,b,c)=0 p(a,b,c)=0的一组解且 x < a < b x<a<b x<a<b.

因为 p ( a , b , c ) = 0 p(a,b,c)=0 p(a,b,c)=0为关于 x x x的二次方程,

所以 y = a b + 1 x > b 为 p ( a , b , c ) = 0 y=\dfrac {ab+1}{x}>b为p(a,b,c)=0 y=xab+1>bp(a,b,c)=0的另一组解.

a 0 = a 1 = a 2 = 1 a_{0}=a_{1}=a_{2}=1 a0=a1=a2=1.

a n + 2 = a n a n + 1 + 1 a n − 1 ( n ≥ 1 ) a_{n+2}=\dfrac {a_{n}a_{n+1}+1}{a_{n-1}} (n\geq1) an+2=an1anan+1+1(n1)

下面证明:

a n − 1 ∣ a n a n + 1 + 1 a_{n-1}|a_{n}a_{n+1}+1 an1anan+1+1

a n ∣ a n − 1 + a n + 1 a_{n}|a_{n-1}+a_{n+1} anan1+an+1

a n + 1 ∣ a n − 1 a n + 1 a_{n+1}|a_{n-1}a_{n}+1 an+1an1an+1

。。。。。。

这里突然冒出来三个结论,就连当时看答案的我自己都懵了:你是怎么看出来这三个如此巧妙的“相辅相成”的引理的?^ _ ^

个人认为,突然冒出来的三个引理虽然也适当使用了无穷递降法,但一定程度上消减了无穷递降法的“艺术”,下面给出我的一种证明:

窝的证明——无穷递降法

我们尝试去找一个这样的 n n n,并证明有无穷多组 ( a , b , c ) (a,b,c) (a,b,c),使得

1 a + 1 b + 1 c + 1 a b c = n a + b + c \dfrac {1}{a}+\dfrac {1}{b}+\dfrac {1}{c}+\dfrac {1}{abc}=\dfrac {n}{a+b+c} a1+b1+c1+abc1=a+b+cn(题目翻译)

化简有:

( a b + b c + a c + 1 ) ( a + b + c ) = n a b c (ab+bc+ac+1)(a+b+c)=nabc (ab+bc+ac+1)(a+b+c)=nabc

( b + c ) a 2 + [ ( n + c ) 2 + b c + 1 − n b c ] a + ( b + c ) ( b c + 1 ) = 0 (b+c)a^2+[(n+c)^2+bc+1-nbc]a+(b+c)(bc+1)=0 (b+c)a2+[(n+c)2+bc+1nbc]a+(b+c)(bc+1)=0

我们假设 ( a 0 , b 0 , c 0 , d 0 ) (a_{0},b_{0},c_{0},d_{0}) (a0,b0,c0,d0)为原方程的一组解,我们想要说明有一组通过特定方式变换而来的另一组不同的解,从而达到无穷递降法的目的。

按照几乎与标答一样的思路,经过一番摸索,我们发现

( b 0 c 0 + 1 a 0 , b 0 , c 0 , n ) (\dfrac {b_{0}c_{0}+1}{a_{0}},b_{0},c_{0},n) (a0b0c0+1,b0,c0,n) ( a 0 , a 0 c 0 + 1 b 0 , c 0 , n ) (a_{0},\dfrac {a_{0}c_{0}+1}{b_{0}},c_{0},n) (a0,b0a0c0+1,c0,n) ( a 0 , b 0 , b 0 a 0 + 1 c 0 , n ) (a_{0},b_{0},\dfrac {b_{0}a_{0}+1}{c_{0}},n) (a0,b0,c0b0a0+1,n)

也是原方程的解。

我们接下来要证的,就是无穷递降下来,整个数列是整数数列。先看看前几组 ( a , b , c ) (a,b,c) (a,b,c)

( 1 , 1 , 1 ) → ( 1 , 1 , 2 ) → ( 1 , 3 , 2 ) → ( 7 , 3 , 2 ) → ( 7 , 3 , 11 ) → … … (1,1,1) \rightarrow (1,1,2) \rightarrow (1,3,2) \rightarrow (7,3,2) \rightarrow (7,3,11) \rightarrow …… (1,1,1)(1,1,2)(1,3,2)(7,3,2)(7,3,11)

{ a n } = { 1 , 1 , 2 , 3 , 7 , 11 , … … } \left\{a_{n}\right\}=\left\{1,1,2,3,7,11,……\right\} {an}={1,1,2,3,7,11,}

我们需要证明 { a n } \left\{a_{n}\right\} {an}是整数构成的数列。

a 1 = a 2 = 1 , a 3 = 2 a_{1}=a_{2}=1,a_{3}=2 a1=a2=1,a3=2

a n + 3 = a n + 2 a n + 1 + 1 a n a_{n+3}=\dfrac {a_{n+2}a_{n+1}+1}{a_{n}} an+3=anan+2an+1+1

{ a n + 1 a n + 4 = a n + 3 a n + 2 + 1 a n a n + 3 = a n + 2 a n + 1 + 1 \{ ^{a_{n}a_{n+3}=a_{n+2}a_{n+1}+1}_{a_{n+1}a_{n+4}=a_{n+3}a_{n+2}+1} {an+1an+4=an+3an+2+1anan+3=an+2an+1+1

a n + 1 a n + 4 − a n a n + 3 = a n + 3 a n + 2 − a n + 2 a n + 1 a_{n+1}a_{n+4}-a_{n}a_{n+3}=a_{n+3}a_{n+2}-a_{n+2}a_{n+1} an+1an+4anan+3=an+3an+2an+2an+1

a n + 4 + a n + 2 a n + 3 = a n + a n + 2 a n + 1 = a n + a n − 2 a n − 1 \dfrac {a_{n+4}+a_{n+2}}{a_{n+3}}=\dfrac {a_{n}+a_{n+2}}{a_{n+1}}=\dfrac {a_{n}+a_{n-2}}{a_{n-1}} an+3an+4+an+2=an+1an+an+2=an1an+an2

a 2 k + 2 + a 2 k a 2 k + 1 = … … = a 4 + a 2 a 3 = 1 + 3 2 \dfrac {a_{2k+2}+a_{2k}}{a_{2k+1}}=……=\dfrac {a_{4}+a_{2}}{a_{3}}=\dfrac {1+3}{2} a2k+1a2k+2+a2k==a3a4+a2=21+3

a 2 k + 3 + a 2 k + 1 a 2 k + 2 = … … = a 3 + a 1 a 2 = 1 + 2 1 \dfrac {a_{2k+3}+a_{2k+1}}{a_{2k+2}}=……=\dfrac {a_{3}+a_{1}}{a_{2}}=\dfrac {1+2}{1} a2k+2a2k+3+a2k+1==a2a3+a1=11+2

a 2 k + 2 = 2 a 2 k + 1 − a 2 k a_{2k+2}=2a_{2k+1}-a_{2k} a2k+2=2a2k+1a2k

a 2 k + 3 = 3 a 2 k + 2 − a 2 k + 1 a_{2k+3}=3a_{2k+2}-a_{2k+1} a2k+3=3a2k+2a2k+1

此时,我们取 ( a , b , c , n ) = ( 1 , 1 , 1 , 12 ) (a,b,c,n)=(1,1,1,12) (a,b,c,n)=(1,1,1,12)

我们完成了证明!


下面是每篇的结束语(凑字数专用) :

欢迎大家关注我的博客!

我的洛谷账号:这是我

我的洛谷团队:这是我的团队

欢迎大家关注我,并加入我的团队哦^ _ ^

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值