数学方法006 | 换元法解决不等式(下)——第三种换元:根据题目条件换元

6 篇文章 0 订阅
1 篇文章 0 订阅

在许多不等式中,题目都会有明显的换元提示(如 x y z = 1 , x y z = x + y + z , x y + y z + z x = 1 xyz=1,xyz=x+y+z,xy+yz+zx=1 xyz=1,xyz=x+y+z,xy+yz+zx=1),这时候就务必要灵敏地察觉这一条件并根据常见的套路换元。总结下来,可以利用的恒等式有:

(左边是恒等式,右边是可以联想到的条件)

1. x y ⋅ y z ⋅ z x = 1 = x z ⋅ y x ⋅ z y    ( a b c = 1 ) 2. x = a + b , y = b + c , z = c + a    ( x , y , z 是三角形三边 ) ( 以下假设 A , B , C 是三角形的三个内角 ) 3. tan ⁡ A + tan ⁡ B + tan ⁡ C = tan ⁡ A tan ⁡ B tan ⁡ C    ( x + y + z = x y z ) 1. \quad\frac{x}{y}\cdot \frac{y}{z}\cdot \frac{z}{x}=1=\frac{x}{z}\cdot \frac{y}{x}\cdot \frac{z}{y}\,\,\left( abc=1 \right) \\2. \quad x=a+b, y=b+c, z=c+a\,\,\left( x, y, z\text{是三角形三边} \right) \\\left( \text{以下假设}A, B, C\text{是三角形的三个内角} \right) \\3. \quad \tan A+\tan B+\tan C=\tan A\tan B\tan C\,\,\left( x+y+z=xyz \right) 1.yxzyxz=1=zxxyyz(abc=1)2.x=a+b,y=b+c,z=c+a(x,y,z是三角形三边)(以下假设A,B,C是三角形的三个内角)3.tanA+tanB+tanC=tanAtanBtanC(x+y+z=xyz)
证明: tan ⁡ A + tan ⁡ B + tan ⁡ C = tan ⁡ ( A + B ) ( 1 − tan ⁡ A tan ⁡ B ) + tan ⁡ C = tan ⁡ ( π − C ) ( 1 − tan ⁡ A tan ⁡ B ) + tan ⁡ C = − tan ⁡ C ( 1 − tan ⁡ A tan ⁡ B ) + tan ⁡ C = tan ⁡ A tan ⁡ B tan ⁡ C . ■ \text{证明:}\tan A+\tan B+\tan C=\tan \left( A+B \right) \left( 1-\tan A\tan B \right) +\tan C\\=\tan \left( \pi -C \right) \left( 1-\tan A\tan B \right) +\tan C\\=-\tan C\left( 1-\tan A\tan B \right) +\tan C\\=\tan A\tan B\tan C. \blacksquare 证明:tanA+tanB+tanC=tan(A+B)(1tanAtanB)+tanC=tan(πC)(1tanAtanB)+tanC=tanC(1tanAtanB)+tanC=tanAtanBtanC.
3.1 cot ⁡ A cot ⁡ B + cot ⁡ B cot ⁡ C + cot ⁡ C cot ⁡ A = 1 ( x y + y z + z x = 1 ) 4. cos ⁡ 2 A + cos ⁡ 2 B + cos ⁡ 2 C + 2 cos ⁡ A cos ⁡ B cos ⁡ C = 1 ( x 2 + y 2 + z 2 + 2 x y z = 1 ) 5. ∑ tan ⁡ A 2 tan ⁡ B 2 = 1 ( x y + y z + z x = 1 ) 6. sin ⁡ 2 x + cos ⁡ 2 x = 1 ( a 2 + b 2 = 1 ) 6.1 m sin ⁡ 2 x + m cos ⁡ 2 x = m    ( a 2 + b 2 = m ) 7. tan ⁡ x cot ⁡ x = 1 ( a b = 1 ) 8. sec ⁡ 2 x − tan ⁡ 2 x = 1 ( a 2 − b 2 = 1 ) 3.1 \quad\cot A\cot B+\cot B\cot C+\cot C\cot A=1 \left( xy+yz+zx=1 \right) \\4. \quad\cos ^2A+\cos ^2B+\cos ^2C+2\cos A\cos B\cos C=1 \left( x^2+y^2+z^2+2xyz=1 \right) \\5. \quad\sum{\tan \frac{A}{2}\tan \frac{B}{2}}=1 \left( xy+yz+zx=1 \right) \\6.\quad \sin ^2x+\cos ^2x=1 \left( a^2+b^2=1 \right) \\6.1 \quad m\sin ^2x+m\cos ^2x=m\,\,\left( a^2+b^2=m \right) \\7. \quad\tan x\cot x=1 \left( ab=1 \right) \\8. \quad\sec ^2x-\tan ^2x=1 \left( a^2-b^2=1 \right) 3.1cotAcotB+cotBcotC+cotCcotA=1(xy+yz+zx=1)4.cos2A+cos2B+cos2C+2cosAcosBcosC=1(x2+y2+z2+2xyz=1)5.tan2Atan2B=1(xy+yz+zx=1)6.sin2x+cos2x=1(a2+b2=1)6.1msin2x+mcos2x=m(a2+b2=m)7.tanxcotx=1(ab=1)8.sec2xtan2x=1(a2b2=1)

经过观察,不难发现,其中三角换元占据了大半壁江山。**其实利用普通代数式进行换元的远比这要多,但不具有普遍性,需要具体问题具体分析。**反之,三角换元却常常被人们所遗忘,因此这里大都是三角换元。

a , b , c > 0 , a + b + c = a b c , 求证: ∑ 1 1 + a 2 ≤ 3 2 . a, b, c>0, a+b+c=abc, \text{求证:}\sum{\frac{1}{\sqrt{1+a^2}}\le \frac{3}{2}.} a,b,c>0,a+b+c=abc,求证:1+a2 123.

解答普遍给出的是下面的解法,但这也恰恰揭示了代数法换元的局限性——即不能处理一些较为复杂的多项式条件,或是不齐次的条件。

证明:令 a = 1 x , b = 1 y , c = 1 z , 则 x y + y z + z x = 1. ∴ ∑ 1 1 + a 2 ≤ 3 2 ⇔ ∑ x x 2 + 1 ≤ 3 2 ⇔ ∑ x x 2 + x y + y z + z x ≤ 3 2    ( 齐次化 ) ⇔ ∑ x ( x + y ) ( x + z ) ≤ 3 2 . 而 x ( x + y ) ( x + z ) = x ( x + y ) ( x + z ) ( x + y ) ( x + z ) ≤ 1 2 ( x + y ) ( x + z ) ⋅ x ( 2 x + y + z ) = 1 2 ⋅ ( x x + y + x x + z ) 等 三式相加,原不等式成立 . ■ \text{证明:令}a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{z}, \text{则}xy+yz+zx=1.\\\therefore \sum{\frac{1}{\sqrt{1+a^2}}}\le \frac{3}{2}\Leftrightarrow \sum{\frac{x}{\sqrt{x^2+1}}}\le \frac{3}{2}\Leftrightarrow \sum{\frac{x}{\sqrt{x^2+xy+yz+zx}}}\le \frac{3}{2}\,\,\left( \text{齐次化} \right) \\\Leftrightarrow \sum{\frac{x}{\sqrt{\left( x+y \right) \left( x+z \right)}}}\le \frac{3}{2}.\\\text{而}\frac{x}{\sqrt{\left( x+y \right) \left( x+z \right)}}=\frac{x\sqrt{\left( x+y \right) \left( x+z \right)}}{\left( x+y \right) \left( x+z \right)}\le \frac{1}{2\left( x+y \right) \left( x+z \right)}\cdot x\left( 2x+y+z \right) =\frac{1}{2}\cdot \left( \frac{x}{x+y}+\frac{x}{x+z} \right) \text{等}\\\text{三式相加,原不等式成立}. \blacksquare 证明:令a=x1,b=y1,c=z1,xy+yz+zx=1.1+a2 123x2+1 x23x2+xy+yz+zx x23(齐次化)(x+y)(x+z) x23.(x+y)(x+z) x=(x+y)(x+z)x(x+y)(x+z) 2(x+y)(x+z)1x(2x+y+z)=21(x+yx+x+zx)三式相加,原不等式成立.

而在熟悉了换元法后,几乎一步就能解决:(利用了第三种换元方法)

证明:令 a = tan ⁡ A , b = tan ⁡ B , c = tan ⁡ C , 其中 A + B + C = π . 则 a + b + c = a b c . ∴ ∑ 1 1 + a 2 = ∑ 1 1 + tan ⁡ 2 A = ∑ cos ⁡ A ≤ 3 2 .    ■ \text{证明:令}a=\tan A, b=\tan B, c=\tan C, \text{其中}A+B+C=\pi . \text{则}a+b+c=abc.\\\therefore \sum{\frac{1}{\sqrt{1+a^2}}}=\sum{\frac{1}{\sqrt{1+\tan ^2A}}}=\sum{\cos A}\le \frac{3}{2}. \,\,\blacksquare 证明:令a=tanA,b=tanB,c=tanC,其中A+B+C=π.a+b+c=abc.1+a2 1=1+tan2A 1=cosA23.
总而言之,换元法虽然管用,但一定要看清题目才能换元,如 x y + y z + z x = 1 xy+yz+zx=1 xy+yz+zx=1的两种换元方法等。更不能盲目换元,否则就会抱着“不撞南墙不回头”的信念进入死胡同。


结束语(凑字数专用) :

欢迎大家关注我的博客!

我的洛谷账号:这是我

我的洛谷团队:这是我的团队

我的GitHub账号:GitHub

欢迎大家关注我,并加入我的团队哦^ _ ^

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值