算法导论 3.1-2 又一道θ的证明题

证明:对任意实常量a和b,其中b>0,有 {\color{Red} (n+a)^{b}} = θ({\color{Red} n^{b}}) 。

以下解答。

根据θ的形式化定义,该问题可以表述为求证如下定义:

θ(n^{b}) = {(n+a)^{b}:存在正常量c_{1}c_{2}n_{0},使得对所有n\geqn_{0},有0\leqc_{1}n^{b}\leq(n+a)^{b}\leqc_{2}n^{b}} 。

我们分两步证明:

1. 证明存在正常量c_{1}n_{0},使得对所有n\geqn_{0},有0\leqc_{1}n^{b}\leq(n+a)^{b} 

我们取c_{1}=0,则c_{1}n^{b}=0,因为只要n+a\geq0,则(n+a)^{b}必然也大于0,要使得n+a\geq0,则要求n\geq-a,也就是说,存在n_{0}=-a,对于所有n\geqn_{0},有0\leqc_{1}n^{b}\leq(n+a)^{b} 。故不等式得证。

2. 证明存在正常量c_{2}n_{0},使得对所有n\geqn_{0},有0\leq(n+a)^{b}\leqc_{2}n^{b}

对不等式(n+a)^{b}\leqc_{2}n^{b} 进行一步步推导推导,可得    =>  由于b>0,对不等式两边进行取对数,得

(n+a)\leqlog_{b}c_{2}n    => 不等式两边各除以n,可得

1+\frac{a}{n}\leq log_{b}c_{2} => 左边式子可以用对数形式描述,得

log_{b}(1+\frac{a}{n})\leq log_{b}c_{2} => 由于b>0,去掉左右对数部分,可得

1+\frac{a}{n}\leqslant c_{2},因此只要证明存在正常量c_{2}n_{0},使得对所有n\geqn_{0},有c_{2}\geq 1+\frac{a}{n}\geq 0即可。

我们取c_{2}=2,只要n_{0}=a,则1+\frac{a}{n} 必然小于等于2,并且它大于0,故c_{2}\geq 1+\frac{a}{n}\geq 0成立。不等式得证。

结合1和2的分步骤论证,我们取1和2中最大的那个n_{0}。原不等式得证。

 

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值