证明:对于任意实常量a和b. 其中b > 0, 有

(n + a) ^ b = \Theta(n ^ b)

为了证明 (n + a) ^ b = \Theta(n ^ b), 我们需要找到存在常量c1, c2, n0 > 0 , 使得对于所有的 n >= n0, 满足不等式 0 <= c1 * (n ^ b) <= (n + a) ^ b <= c2 * (n ^ b)

我们知道:

当 |a| <= n:

        n + a <= n + |a| <= 2n

另外:

当 |a| <= n/2:

n + a >= n - |a| >= n / 2

因此:

当 n >= 2|a| 时:

0 <= n/2 <= n + a <=2n

因此,对于 b > 0:

0 <= (n / 2) ^ b <= (n + a) ^ b <= (2n) ^ b

c1 = (1/2) ^ b, c2 = 2 ^ b, n0 = 2|a| 满足定义

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,我们可以使用二项式定理展开 `(n+a)^b`: ``` (n+a)^b = C(b,0)*n^b*a^0 + C(b,1)*n^(b-1)*a^1 + ... + C(b,b-1)*n*a^(b-1) + C(b,b)*a^b ``` 其中 `C(b,k)` 表示从 `b` 个元素中选择 `k` 个元素的组合数。我们只需要证明,对于任意常量 `a` 和 `b`,存在正常数 `c1` 和 `c2`,使得当 `n` 充分大时,有: ``` c1 * n^b <= (n+a)^b <= c2 * n^b ``` 我们从右边开始证明。我们可以将二项式定理展开式中的每一项都除以 `n^b`,然后取最大项,即当 `k=b` 时的项: ``` (n+a)^b / n^b = C(b,0)*(a/n)^0 + C(b,1)*(a/n)^1 + ... + C(b,b-1)*(a/n)^(b-1) + C(b,b)*(a/n)^b ``` 注意到当 `k<b` 时, `(a/n)^k` 随着 `n` 的增大而趋近于零。因此,当 `n` 充分大时,只有最后一项 `C(b,b)*(a/n)^b` 会对结果产生显著的影响。因此,当 `n` 充分大时,有: ``` (n+a)^b / n^b <= C(b,b)*(a/n)^b + 1 ``` 因为 `b` 和 `a` 都是常数,所以存在正常数 `c2`,使得当 `n` 充分大时,有 `(n+a)^b / n^b <= c2`。因此,我们证明了 `(n+a)^b = O(n^b)`。 现在我们考虑左边的证明。类似地,我们可以将二项式定理展开式中的每一项都除以 `n^b`,然后取最小项,即当 `k=0` 时的项: ``` (n+a)^b / n^b = C(b,0)*(a/n)^0 + C(b,1)*(a/n)^1 + ... + C(b,b-1)*(a/n)^(b-1) + C(b,b)*(a/n)^b ``` 因为 `b` 和 `a` 都是常数,所以当 `n` 充分大时,只有第一项 `C(b,0)` 会对结果产生显著的影响。因此,当 `n` 充分大时,有: ``` (n+a)^b / n^b >= C(b,0)*(a/n)^0 ``` 因为 `C(b,0)=1`,所以上式等价于: ``` (n+a)^b / n^b >= a^0 = 1 ``` 因此,我们证明了 `(n+a)^b = Ω(n^b)`。 综上所述,我们证明了 `(n+a)^b = Θ(n^b)`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值