证明定理3.1
解答:
定理3.1 对任意两个函数f(n)和g(n),我们有f(n)=θ(g(n)),当且仅当f(n)=O(g(n))且f(n)=Ω(g(n)) 。
为了回答这道题,我们把θ、O和Ω三个函数的形式化定义列一遍。
θ:θ(g(n)) = { f(n): 存在正常量,
和
,使得对所有
,有
}
O:O(g(n)) = { f(n):存在正常量c和
解答:
定理3.1 对任意两个函数f(n)和g(n),我们有f(n)=θ(g(n)),当且仅当f(n)=O(g(n))且f(n)=Ω(g(n)) 。
为了回答这道题,我们把θ、O和Ω三个函数的形式化定义列一遍。
θ:θ(g(n)) = { f(n): 存在正常量,
和
,使得对所有
,有
}
O:O(g(n)) = { f(n):存在正常量c和