算法导论 3.1-5 证明定理3.1

本文详细解析了定理3.1,即函数的渐近性质。定理指出,对于任意两个函数f(n)和g(n),f(n)=θ(g(n))当且仅当f(n)=O(g(n))且f(n)=Ω(g(n))。通过θ、O和Ω的定义,证明了两个方向的必要性和充分性,展示了它们之间的关系和在算法复杂度分析中的应用。
摘要由CSDN通过智能技术生成

证明定理3.1

解答:

定理3.1 对任意两个函数f(n)和g(n),我们有f(n)=θ(g(n)),当且仅当f(n)=O(g(n))且f(n)=Ω(g(n)) 。

为了回答这道题,我们把θ、O和Ω三个函数的形式化定义列一遍。

θ:θ(g(n)) = { f(n): 存在正常量c_{1}c_{2}n_{0},使得对所有n\geq n_{0},有 0\leq c_{1}g(n)\leq f(n)\leq c_{2}g(n) }

O:O(g(n)) = { f(n):存在正常量c和n_{0},使得对所有n\geq n_{0},有 0\leq f(n)\leq cg(n) }

Ω:Ω(g(n)) = { f(n):存在正常量c和n_{0},使得对所有n\geq n_{0},有0\leq cg(n)\leq f(n) }

为了证明该定理,必须分为两个步骤。

一、证明结论:如果f(n)=θ(g(n)),则必有f(n)=O(g(n))且f(n)=Ω(g(n)) 。

由θ函数定义可知,如果f(n)=θ(g(n)),则我们有:

θ(g(n)) = { f(n): 存在正常量c_{1}c_{2}n_{0},使得对所有n\geq n_{0},有 0\leq c_{1}g(n)\leq f(n)\leq c_{2}g(n) },

那么在以上形式化定义下,θ同时满足O和Ω的形式化定义,故该结论成立。

二、如果f(n)=O(g(n))且f(n)=Ω(g(n)),则必有f(n)=θ(g(n)) 。

如果f(n)=O(g(n))且f(n)=Ω(g(n)),则可推导出存在正常量c_{1}c_{2}n_{0},使得对所有n\geq n_{0},有0\leq c_{1}g(n)\leq f(n) ,且0\leq f(n)\leq c_{2}g(n),由此可以推导出

0\leq c_{1}g(n)\leq f(n)\leq c_{2}g(n) 。故该结论成立。

 

 

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值