算法导论 3.2-1 关于单调递增函数的证明

证明:若f(n)和g(n)是单调递增的函数,则函数f(n)+g(n)和f(g(n))也是单调递增的,此外,若f(n)和g(n)是非负的,则f(n)·g(n)是单调递增的。

解答:

证明1:若f(n)和g(n)是单调递增的函数,则函数f(n)+g(n)也是单调递增的。

m\leq n,因为f(n)和g(n)是单调递增的函数,可得 f(m)\leq f(n) 且 g(m)\leq g(n) ,我们将两个不等式左右相加,可得

f(m)+g(m)\leq f(n)+g(n) 。由此可知函数f(n)+g(n)也是单调递增的。

证明2:若f(n)和g(n)是单调递增的函数,则函数f(g(n))也是单调递增的。

m\leq n,因为g(n)是单调递增的函数,可得 g(m)\leq g(n) ,取m_{0}=g(m)n_{0}=g(n),则可知m_{0}\leq n_{0},由于f(n)已知是单调递增函数,所以必然存在f(m_{0})\leq f(n_{0}),即f(g(m))\leq f(g(n)),由此可知函数f(g(n))也是单调递增的。

证明3:若f(n)和g(n)是非负的,则f(n)·g(n)是单调递增的。

m\leq n,因为f(n)和g(n)是单调递增的函数,可得 f(m)\leq f(n) 且 g(m)\leq g(n) ,我们将不等式f(m)\leq f(n)左右两边各乘以g(m),由于g(m)是非负的,可得

f(m)g(m)\leq f(n)g(m)  --- 不等式 1

由于g(m)\leq g(n),我们将不等式两边各自乘以f(n),由于f(n)是非负的,可得

f(n)g(m)\leq f(n)g(n) --- 不等式 2

结合不等式1和不等式2,可得f(m)g(m)\leq f(n)g(m)\leq f(n)g(n),进一步可得

f(m)g(m)\leq f(n)g(n)

因此证明3成立。

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值