算法导论 3-3 根据渐近增长率排序

(根据渐近增长率排序)

a. 根据增长的阶来排序下面的函数,即求出满足{\color{Red} g_{1}=\Omega (g_{2})}{\color{Red} g_{2}=\Omega(g_{3})},…{\color{Red} g_{29}=\Omega (g_{30})}的函数的一种排列{\color{Red} g_{1}}{\color{Red} g_{2}},…{\color{Red} g_{30}}的函数的一种排列{\color{Red} g_{1}}{\color{Red} g_{2}},…{\color{Red} g_{30}}。把你的表划分成等价类,使得函数{\color{Red} f(n)}{\color{Red} g(n)}在相同类中当且仅当{\color{Red} f(n)=\Theta (g(n))}

{\color{Red} lg(lg^{*}n)}{\color{Red} 2^{lg^{*}n}}{\color{Red} (\sqrt{2})^{lgn}}{\color{Red} n^{2}}{\color{Red} n!}{\color{Red} (lgn)!}{\color{Red} (\frac{3}{2})^{n}}{\color{Red} n^{3}}{\color{Red} lg^{2}n}{\color{Red} lg(n!)}{\color{Red} 2^{2^{n}}}{\color{Red} n^{1/lgn}}{\color{Red} lnlnn}{\color{Red} lg^{*}n}{\color{Red} n\cdot 2^{n}}{\color{Red} n^{lglgn}}{\color{Red} lnn}{\color{Red} 1}{\color{Red} 2^{lgn}}{\color{Red} (lgn)^{lgn}}{\color{Red} e^{n}}{\color{Red} 4^{lgn}}{\color{Red} (n+1)!}{\color{Red} \sqrt{lgn}}{\color{Red} lg^{*}(lgn)}{\color{Red} 2^{\sqrt{2lgn}}}{\color{Red} n}{\color{Red} 2^{n}}{\color{Red} nlgn}{\color{Red} 2^{2^{n+1}}} 。

b. 给出非负函数{\color{Red} f(n)}的一个例子,使得对所有在(a)部分中的函数{\color{Red} g_{i}(n)}{\color{Red} f(n)}既不是{\color{Red} O(g_{i}(n))}也不是{\color{Red} \Omega (g_{i}(n))} 。

解答:

a,n^{1/lgn}(=2),lg(lg^{*}n)lg^{*}(lgn)lg^{*}n2^{lg^{*}n}lnlnn\sqrt{lgn}lnnlg^{2}n(\sqrt{2})^{lgn}(=\sqrt{n}),2^{\sqrt{2lgn}}2^{lgn}=nlg(n!)nlgnn^{2}=4^{lgn}n^{3}(lgn)!n^{lglgn}=(lgn)^{lgn}(\frac{3}{2})^{n}2^{n}n\cdot 2^{n}e^{n}n!(n+1)!2^{2^{n}}2^{2^{n+1}} 

等价类编排:

θ(g(n))f(n)
θ(1)1, n^{1/lgn}
lg(lg^{*}n)

lg(lg^{*}n)

lg^{*}nlg^{*}(lgn)lg^{*}n
2^{lg^{*}n}2^{lg^{*}n}
lnlnnlnlnn
\sqrt{lgn}\sqrt{lgn}
lnnlnn
lg^{2}nlg^{2}n
2^{\sqrt{2lgn}}2^{\sqrt{2lgn}}
\sqrt{n}(\sqrt{2})^{lgn}
nn2^{lgn}
lg(n!)lg(n!)
nlgnnlgn
n^{2}n^{2}4^{lgn}
n^{3}n^{3}
(lgn)!(lgn)!
 n^{lglgn}n^{lglgn}(lgn)^{lgn}
(\frac{3}{2})^{n}(\frac{3}{2})^{n}
2^{n}2^{n}
n\cdot 2^{n}n\cdot 2^{n}
e^{n}e^{n}
n!n!
(n+1)!(n+1)!
2^{2^{n}}2^{2^{n}}
2^{2^{n+1}}2^{2^{n+1}}

b. n^{tan(n)}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值