Matlab学习笔记二(矩阵运算)

matlab中,矩阵的运算:

目录

matlab中,矩阵的运算:

1、加减法

 2、乘法

2.1 矩阵乘法

 2.2 向量乘法:

 2.3 向量点积

 2.4向量叉积

3、矩阵除法

 4、矩阵转置


1、加减法

如果A和B具有相同的维数,那么就可以定义A+B、A-B等加法、减法运算。

对应位置上元素进行加减

A=[1 2;3 4];
B=[5 6;7 8];
C_SUM=A+B
C_JIAN=A-B
c_100=A+100

结果:

 2、乘法

2.1 矩阵乘法

 如果矩阵A的列数等于矩阵B的行数,那么矩阵可以相乘,即C=AB,就被定义为二维矩阵。对于方阵要注意AB和BA并不相同。

multAB=A*B
MULTBA=B*A
A2=[1 2 3;4 5 6];
B2=[4 2 1;3 5 6;9 10 2];
MULTab=A2*B2

结果:

 2.2 向量乘法:

x=[1 2 3];
y=[1;10;100];
s=x*y
m=y*x

 结果:

 2.3 向量点积

dot(x,y)得到向量x、y的点积
dot(A,B)得到一个长度为n的行向量,这里的元素是A和B对应的点积。矩阵A和B必须是具有相同的位数m*n.
dot(A,B,dim)在dim数组中给出A和B的点积

代码:

其中要注意:

dot(A,B,1) 将 A 和 B 的列视为向量,并返回对应列的点积。

dot(A,B,2) 将 A 和 B 的行视为向量,并返回对应行的点积。

A=[1 2;3 4];
B=[5 6;7 8];
x=[1 2 3];
y=[1;10;100];
dotxy=dot(x,y)
dotAB=dot(A,B)
dotABdim=dot(A,B,2)
dotABdim1=dot(A,B,1)

 结果:

 2.4向量叉积

cross(x,y)得到向量x,y的叉积
cross(A,B)得到一个3×n矩阵,其中的列是A和B对应列的叉积。矩阵A和B必须具有相同的位数3×n。
cross(A,B,dim)在dim数组中给出向量A和B的叉积。A和B必须具有相同的维数,size(A,dim)和size(B,dim)必须是3
x=[1 0 0];
y=[0 1 0];
crossprod=cross(x,y)

3、矩阵除法

在matlab中有左除\和右除/。如果A可逆那么A\B等于A-1*B。A/B等于B*A-1。逆矩阵函数用inv(A)

A=[1 2;3 4];
B=[5 6;7 8];
right=B/A
left=B\A
Right=B*inv(A)
Left=inv(A)*B

结果:

 4、矩阵转置

transp=A'

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值