目录
一、39. 组合总和
题目链接:力扣
文章讲解:代码随想录
视频讲解: Leetcode:39. 组合总和讲解
题目:
给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates 中的 同个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。
代码:
class Solution {
public:
void dfs(vector<vector<int>> &ans, vector<int> &candidates, int &target, int sum, vector<int> path, int begin){
if (sum >= target){
if(sum == target) ans.push_back(path);
return;
}
for(int i = begin; i < candidates.size() && sum+candidates[i] <= target; i++){
int x = candidates[i];
path.push_back(x);
dfs(ans, candidates, target, sum+x, path, i);
path.pop_back();
}
}
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> ans;
vector<int> path;
sort(candidates.begin(), candidates.end());
dfs(ans, candidates, target, 0, path, 0);
return ans;
}
};
时间复杂度: O(n * 2^n) 空间复杂度: O(target)
⏲:6:30
总结:1.在求和问题中,排序之后加剪枝是常见的套路。排序时间复杂度远低于回溯,能用则用吧。
二、40. 组合总和 II
题目链接:力扣
文章讲解:代码随想录
视频讲解:回溯算法中的去重,树层去重树枝去重,你弄清楚了没?| LeetCode:40.组合总和II
题目:给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次 。 注意:解集不能包含重复的组合。
代码:
class Solution {
public:
void dfs(vector<vector<int>> &ans, vector<int>& candidates, int target, vector<int> path, int sum, int begin){
if(sum == target) {
ans.push_back(path);
return;
}
for (int i = begin; i < candidates.size() && target >= sum+candidates[i]; i++){
if(i > begin && candidates[i-1] == candidates[i] ) continue;
path.push_back(candidates[i]);
dfs(ans, candidates, target, path, sum+candidates[i], i+1);
path.pop_back();
}
}
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<vector<int>> ans;
vector<int> path;
dfs(ans, candidates, target, path, 0, 0);
return ans;
}
};
时间复杂度: O(2^n×n) 空间复杂度: O(n)
⏲:8:12
总结:层级去重:排序后,相邻相同,后者跳过。理解为,当两者相同时,后序的可能性也相同,只选一个即可,而前者拥有包含后者的情况,故选前者。
回溯的问题都可抽象成为树,而树有层级重复与枝级(指元素可重复选取)重复,层级靠排序去重,值级靠递归时i+1来避免重复。
三、131. 分割回文串
题目链接:力扣
文章讲解:代码随想录
视频讲解:131.分割回文串
题目:给你一个字符串 s,请你将 s分割成一些子串,使每个子串都是 回文串 。返回 s所有可能的分割方案。回文串 是正着读和反着读都一样的字符串。 代码:
//切割问题
class Solution {
public:
//双指针
/*bool ispalindrome(string &s, int start, int end)
{
for (int i = start, j = end; i <= j; i++, j--)
if (s[i] != s[j]) return false;
return true;
}*/
//dp
void palindrome(const string& s, vector<vector<bool>> &ispalindrome) //左闭右闭
{
for (int i = s.size()-1; i >= 0; i--) {
//需要倒序计算, 保证在i行时, i+1行已经计算好了
//两个顺序,一个时第i行时i+1行已有,一个是左到右(少到多)
for (int j = i; j < s.size(); j++)
{
if (j == i)
ispalindrome[i][j] = true;
else if (j - i == 1)
ispalindrome[i][j] = (s[i] == s[j]);
else
ispalindrome[i][j] = (s[i] == s[j] && ispalindrome[i+1][j-1]);//s[0] == s[n-1]且s[1:n-1]
}
}
}
void backtracking(int start, vector<vector<string>> &ans, vector<string> &path, string &s, vector<vector<bool>> &ispalindrome)
{
if (start >= s.size())
{
ans.push_back(path);
return;
}
for (int i = start; i < s.size(); i++)
{
if (/*ispalindrome(s, start, i)*/ispalindrome[start][i])//判断回文
{
string str = s.substr(start, i - start + 1);//复制字符串suber(起始,数量)
path.push_back(str);
backtracking(i+1, ans, path, s, ispalindrome);
path.pop_back();
}
}
}
vector<vector<string>> partition(string s) {
vector<vector<string>> ans;
vector<vector<bool>> ispalindrome(s.size(), vector<bool>(s.size(), false));
vector<string> path;
palindrome(s, ispalindrome);
backtracking(0, ans, path, s, ispalindrome);
return ans;
}
};
时间复杂度: O(n*2^n) 空间复杂度: O(n^2)
⏲:11:42
总结:
1.切割问题可以抽象为组合问题:每层从左到右,切割成左右两部分,下一层从切割点往右切割。
2.切割问题中递归如何终止:切割线的下标(即start),到了最后一位后面(即等于size)。
3.在递归循环中如何截取子串:suber函数,.suber(起始,数量)。
4.如何判断回文:(1)双指针(2)dp:倒序计算 s[0] == s[n-1]且s[1:n-1]