Leetcode64. Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
解法 动态规划
第 1 步:定义状态
设dp为m x n的矩阵,dp[i][j]表示到达点(i,j)的最小路径和。
第 2 步:思考状态转移方程
题目要求,只能向右或向下走,换句话说,当前单元格
(i,j)只能从左方单元格(i−1,j)或上方单元格(i,j−1)走到,因此只需要考虑矩阵左边界和上边界。
走到当前单元格 (i,j) 的最小路径和 = “从左方单元格 (i−1,j) 与 从上方单元格 (i,j−1) 走来的两个最小路径和中较小的 ” + 当前单元格值 grid[i][j] 。具体分为以下 4 种情况:
- 当左边与上边都不是矩阵边界时:i≠0,j≠0,dp[i][j]=min(dp[i−1][j],dp[i][j−1])+grid[i,j]i\neq 0,j\neq 0,dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i,j]i=0,j=0,dp[i][j]=min(dp[i−1][j],dp[i][j−1])+grid[i,j]
- 当只有左边是矩阵边界时,只能从上面来:i=0,j≠0,dp[i][j]=dp[i][j−1]+grid[i,j]i= 0,j\neq 0,dp[i][j]=dp[i][j-1]+grid[i,j]i=0,j=0,dp[i][j]=dp[i][j−1]+grid[i,j]
- 当只有上边是矩阵边界时,只能从左边来:i≠0,j=0,dp[i][j]=dp[i−1][j]+grid[i,j]i\neq 0,j= 0,dp[i][j]=dp[i-1][j]+grid[i,j]i=0,j=0,dp[i][j]=dp[i−1][j]+grid[i,j]
- 当左边和上边都是矩阵边界时:i=0,j=0,dp[i,j]=grid[i,j]i= 0,j= 0,dp[i,j] = grid[i,j]i=0,j=0,dp[i,j]=grid[i,j]
第 3 步:思考初始值
初始化dp[m,n]为0。
第 4 步:思考输出
输出dp矩阵的右下角值。
第5部:思考状态压缩
不需要建立 dp 矩阵浪费额外空间,直接遍历grid[i][j]修改即可,因为原 grid 矩阵元素中被覆盖为 dp元素后(都处于当前遍历点的左上方),不会再被使用到。grid[i][j] = min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j]
- 时间复杂度:
- 空间复杂度:
Java
class Solution {
public int minPathSum(int[][] grid) {
for(int i = 0; i < grid.length; i++) {
for(int j = 0; j < grid[0].length; j++) {
if(i == 0 && j == 0) continue;
else if(i == 0) grid[i][j] = grid[i][j - 1] + grid[i][j];
else if(j == 0) grid[i][j] = grid[i - 1][j] + grid[i][j];
else grid[i][j] = Math.min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j];
}
}
return grid[grid.length - 1][grid[0].length - 1];
}
}
Python
class Solution:
def minPathSum(self, grid: [[int]]) -> int:
for i in range(len(grid)):
for j in range(len(grid[0])):
if i == j == 0: continue
elif i == 0: grid[i][j] = grid[i][j - 1] + grid[i][j]
elif j == 0: grid[i][j] = grid[i - 1][j] + grid[i][j]
else: grid[i][j] = min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j]
return grid[-1][-1]
245

被折叠的 条评论
为什么被折叠?



