2D实时语义分割
文章平均质量分 90
2D实时语义分割论文+工程测试
magic_ll
有空就记记,没空就休息
展开
-
【工程测试与训练】使用 DDRNet 测试、训练cityscapes数据集、训练自己的数据集
工程下载使用电脑环境 :Ubuntu18+anconde环境配置:略作者提供的测试工程:https://github.com/ydhongHIT/DDRNet其他开发者复现的完整工程:https://github.com/chenjun2hao/DDRNet.pytorch 下载第二个工程,并下载第一个工程中的预训练模型,放置路径【pretrained_models】 为了工程好管理,所以文件布局如下。(本人习惯工程和数据集分开放置,多个工程获取数据更规范)└──DataSet_2D.原创 2022-04-02 14:16:01 · 7108 阅读 · 52 评论 -
【工程测试与训练】使用BiSeNetv2测试、训练cityscapes数据集、训练自己的数据集
1 准备工作下载工程工程下载:https://github.com/CoinCheung/BiSeNet预训练模型下载:工程下载后解压,并在其中创建文件夹【MODEL】用于存放预训练模型本人的开发环境:ubuntu 18.04、cuda10.2、cudnn7、python3.7、pytorch 1.8.1工程运行过程中,会报错找不到库,pip安装对应的库即可2 运行demo使用 【bisenetv2_city】测试图片:python tools/demo.py --con.原创 2022-01-06 14:15:53 · 11176 阅读 · 54 评论 -
【论文阅读--实时语义分割】PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller
双分支网络结构已显示出其对实时语义分割任务的效率性和有效性。然而,低级细节和高级语义的直接融合将导致细节特征容易被周围上下文信息淹没,即本文中的超调 (overshoot),这限制了现有两个分支模型的准确性的提高。在本文中,我们在卷积神经网络(CNN)和比例积分微分(PID)控制器之间架起了桥梁,并揭示了双分支网络只是一个比例积分(PI)控制器,当然也会存在类似的超调问题。,它具有三个分支来分别解析细节、上下文和边界信息(语义的派生),并在最后阶段使用来指导细节和上下文分支的融合。原创 2023-03-06 20:38:58 · 4039 阅读 · 6 评论 -
【论文阅读--实时语义分割】DDRNet:Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation
用于道路场景实时准确语义分割的深度双分辨率网络摘要语义分割是自动驾驶汽车理解周围场景的关键技术。现代模型的吸引力表现通常是以繁重的计算和漫长的推理时间为代价的,这对于自动驾驶来说是无法忍受的。使用轻量级架构(编码器-解码器或双通道)或对低分辨率图像进行推理,最近的方法实现了非常快速的场景解析,甚至在单个1080Ti GPU上以超过100fps的速度运行。然而,这些实时方法与基于dilation backbones的模型在性能上仍有很大差距。为了解决这个问题,我们提出了一系列专门为实时语义分割设计的高效主原创 2022-03-03 15:04:10 · 7620 阅读 · 0 评论 -
【论文阅读--实时语义分割】RegSeg:Rethink Dilated Convolution for Real-time Semantic Segmentation
Abstract语义分割的最新进展通常采用ImageNet预训练主干网,在其后面有一个特殊的上下文模块,以快速增加视野。尽管取得了成功,但大部分计算所在的主干网没有足够大的视野来做出最佳决策。最近的一些进展通过快速降低主干中的分辨率来解决这个问题,同时还具有一个或多个具有更高分辨率的并行分支。我们采用了一种不同的方法,设计了一种受ResNeXt启发的块结构,该结构使用两个具有不同膨胀率的平行3×3卷积层来增加视野,同时保留局部细节。通过在主干中重复这种块结构,我们不需要在其后面附加任何特殊的上下文模块。此原创 2022-03-03 15:10:33 · 4681 阅读 · 5 评论 -
【论文阅读--实时语义分割】STDC:Rethinking BiSeNet For Real-time Semantic Segmentation
Abstract【BiSeNet的存在问题】BiSeNet[28,27]已被证明是一种流行的用于实时分割的双流网络。其添加额外路径来编码空间信息的原理非常耗时,并且由于任务特定设计的不足,从预训练任务(例如图像分类)借用的主干对于图像分割可能效率低下。【STDC网络的提出】设计了一个短期密集连接模块(STDC模块),通过消除结构冗余而高效,用于提取具有可扩展感受野和多尺度信息的深层特征。该模块以可承受的计算成本 提升了STDC网络的性能。具体地说,我们逐步降低特征映射的维数,并使用它们的聚合来表.原创 2021-12-23 18:23:03 · 4031 阅读 · 0 评论 -
【论文阅读--实时语义分割】BiSeNet V2: Bilateral Network with Guided Aggregation
摘要低层细节和高层语义对于语义分割任务都是必不可少的。然而,为了加快模型推理的速度,目前的方法几乎总是牺牲低级细节,这导致了相当大的精度下降。我们建议将这些空间细节和分类语义分开处理,以实现高精度和高效率的实时语义分割。为此,我们提出了一种在速度和准确性之间进行良好权衡的高效体系结构,称为双边分割网络(BiSeNet V2)。该体系结构包括:(1)一个细节分支,浅层 宽通道,用于捕获低级细节并生成高分辨率特征表示;(2)语义分支,层深 通道窄,获取高层语义语境。由于降低了信道容量和快速下采样策略,.原创 2021-12-23 17:36:58 · 4355 阅读 · 0 评论 -
【论文阅读--实时语义分割】BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation
在当前的计算机视觉领域,语义分割是一项基本任务,比较常见的就是deeplab系列。deeplab 系列是 谷歌公司 完成的,包括了deeplabv1 (2015)、deeplabv2 (2017)、deeplabv3 (2017)、deeplabv3+ (2018),其中deeplabv3+效果最好。但效果好的同时,一般模型计算量较大,推理时间无法达到实时。这部分的内容记录在本人博客专栏中 https://blog.csdn.net/magic_ll/category_10568836.html原创 2021-12-20 17:10:03 · 2161 阅读 · 0 评论