点云分割+点云目标检测
文章平均质量分 88
点云分割+点云目标检测的论文和工程
magic_ll
有空就记记,没空就休息
展开
-
点云分割3DBoNet || 工程环境配置cuda10.0-tensorflow-1.13
写在前面:服务器上的环境的cuda、显卡驱动版本都是偏高的。但该项目中,对于 tf_ops的编译环境,要求tensorflow的版本在1.13及1.13以下,会比较容易编译,1.14以上,看网上讲述的需要修改些设置。本着尽快编译通过进行测试的原则,环境最终选择了tensorflow-gpu==1.13、cuda10.0。就在自己本地安装了个双系统,在ubuntu上配置该工程,并且一遍过,在这里记录下1 安装cuda10.0 以及相应的 cudnn该步骤网上的教程随便一搜就可解决问题。这里需.原创 2021-06-11 11:18:35 · 1044 阅读 · 10 评论 -
点云目标检测BRNET || 2. 基于MMDetection3D的处理数据思路
借着使用BRNET工程之际,了解下MMDetection3D框架相关的内容对于数据处理,MMDetection3D针对每种3D数据集,在代码中实现了一个类来进行数据的处理。在工程【test/test_data/test_datasets/】路径下,存放着数据读取处理的测试脚本。接下来以【test_scannet_dataset.py】为例。最核心的代码为scannet_dataset = ScanNetDataset(root_path, ann_file, pipelines)其中入参原创 2021-09-29 13:45:54 · 1019 阅读 · 1 评论 -
点云目标检测BRNET || 1. 基于MMDetection的BRNet工程环境配置与测试
1. BRNET 的环境配置1. 使用anoconda安装虚拟环境 conda create -n brnet_env python=3.7 -yconda activate brnet_env 2. 安装pytorch和torchvision,这里选择的版本如下: conda install pytorch==1.5.0 cudatoolkit=10.1 torchvision==0.6.0 -c pytorch这里需要注意:1. 可以将安装命令中的 "-c pytorch"去.原创 2021-09-23 08:47:36 · 903 阅读 · 1 评论 -
CloudCompare的安装、标注点云语义标签
1.CloudCompare的安装与运行安装sudo apt-get updatesudo apt install snapsudo snap install cloudcompare运行cloudcompare.CloudCompareloudcompare.ccViewer或者2. 点云语义标签标注流程1. 打开软件,将需要操作的点云拖入界面中2. 点击左上角的点云文件名,保证目标点云被选中,【Property下的Colors】可选择显示点云的......原创 2021-10-15 14:15:54 · 5762 阅读 · 2 评论 -
【论文阅读】3D点云 -- BRNet:Back-tracing Representative Points for Voting-based3D Object Detection in PC
Abstract点云中的三维目标检测是一项具有挑战性的视觉任务,有利于理解三维视觉世界的各种应用。【研究方向】最近的许多研究集中在如何利用端到端可训练的Hough投票来生成对象提案。【存在问题】然而,当前的投票策略只能从潜在对象的表面获得部分投票,同时从杂乱的背景中获得严重的异常投票,这阻碍了输入点云信息的充分利用。【解决方法】受传统Hough投票方法中回溯策略的启发,本文介绍了一种新的三维目标检测方法,称为回溯代表点网络(BRNet),生成追溯投票中心的代表点,并重新访问这些生成点周围原创 2021-11-01 17:12:24 · 815 阅读 · 0 评论 -
【论文阅读】3D点云 -- VoteNet:Deep Hough Voting for 3D Object Detection in Point Clouds
Abstract当前的三维目标检测方法受到二维探测器的严重影响。为了利用2D探测器中的体系结构,通常将3D点云转换为规则网格(即,转换为体素网格或鸟瞰图图像),或者依靠2D图像中的检测来提出3D框。很少有工作试图直接检测点云中的对象。在这项工作中,我们回到第一原则,为点云数据构建一个尽可能通用的3D检测管道。然而,由于数据的稀疏性(来自3D空间中2D流形的样本),我们在从场景点直接预测边界框参数时面临一个重大挑战:3D对象质心可能远离任何曲面点,因此很难在一步中精确回归。 为了应对这一挑战,我原创 2021-11-01 11:01:03 · 1880 阅读 · 0 评论 -
【论文阅读】3D点云 -- PointConv: Deep Convolutional Networks on 3D Point Clouds
Abstract与在规则密集网格中表示的图像不同,三维点云是不规则和无序的,因此对其应用卷积可能很困难。在本文中,我们将动态滤波器扩展到一种新的卷积运算,名为PointConv。PointConv可以应用于点云,以构建深度卷积网络。我们将卷积核视为由权重函数和密度函数组成的三维点的局部坐标的非线性函数。对于给定的点,通过多层感知器网络和核密度估计的密度函数学习权函数。这项工作最重要的贡献是提出了一种新的用于有效计算权重函数的重新公式,它使我们能够极大地扩展网络并显著提高其性能。学习的卷积核可用于计算三维空原创 2021-11-10 10:23:03 · 1299 阅读 · 0 评论 -
【论文阅读】3D点云 -- PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
Abstract以前很少有研究点集深度学习的著作。PointNet[20]是这方面的先驱。然而,通过设计,点网无法捕获由度量空间点所产生的局部结构,从而限制了其识别细粒度模式的能力以及对复杂场景的通用性。在这项工作中,我们介绍了一种分层神经网络,它将点网递归地应用于输入点集的嵌套划分。通过利用度量空间距离,我们的网络能够在不断增加的上下文范围内学习局部特征。进一步观察到点集通常以不同的密度采样,这导致在均匀密度上训练的网络的性能大大降低,我们提出了新的集学习层来自适应地组合来自多个尺度的特征。实验表明,我原创 2021-10-29 16:07:46 · 837 阅读 · 0 评论 -
【论文阅读】3D点云 -- PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
Abstract点云是一种重要的几何数据结构。【存在问题】由于其不规则的格式,大多数研究人员将这些数据转换为规则的三维体素网格或图像集合。但是,这会使数据变得不必要的庞大,并导致问题。【本文设计】在本文中,我们设计了一种新型的直接消耗点云的神经网络,它很好地考虑了输入点的置换不变性。我们的网络名为PointNet,它为从对象分类、零件分割到场景语义解析的应用程序提供了统一的体系结构。虽然简单,但PointNet是高效的。从经验上看,它表现出强劲的表现,甚至比现有技术更好。理论上,我们提供分析原创 2021-10-28 20:00:54 · 2678 阅读 · 0 评论