deeplab系列
magic_ll
有空就记记,没空就休息
展开
-
deeplabv3开源工程(3)—— 报错:2 root error(s) found. (0) Invalid argument: padded_shape[0]=168 is not...
使用自己的数据进行deeplabv3+的训练。训练阶段可正常运行,在预测结果可视化、验证的时候,会报如下错误:tensorflow.python.framework.errors_impl.InvalidArgumentError: 2 root error(s) found. (0) Invalid argument: padded_shape[0]=168 is not divisible by block_shape[0]=18 [[{{node aspp3_depthwise/depth.原创 2020-11-19 16:34:23 · 2088 阅读 · 5 评论 -
deeplabv3开源工程详解(2)—— 使用自己的数据集进行训练、迁移学习
deeplabv3是当前比较好、用的也比较多的语义分割的神经网络,且整个训练工程已经全部开源,使用公布的模型进行测试或基于自己的训练都可以得到一个较好的结果。记录下如何使用deeplabv3训练自己的数据集。1 工程准备环境【TITAN XP】+【Ubuntu】+【tensorflow-gpu-1.14】+【cuda10.2】(使用1.8.0及以上版本,1.4.0缺少函数,会报错) 下载包下载工程并解压https://github.com/tensorflow/models解压后.原创 2020-11-18 14:31:55 · 2305 阅读 · 3 评论 -
deeplabv3开源工程详解(1)—— 开源模型测试自己的图片
前言deeplabv3是当前较为常用的语义分割的神经网络,且整个训练工程已经全部开源,使用公布的模型进行测试或基于自己的训练都可以得到一个较好的结果。1 工程准备环境【TITAN XP】+【Ubuntu】+【tensorflow-gpu-1.14】+【cuda10.2】(使用1.8.0及以上版本,低版本缺少函数,会报错) 下载包下载工程并解压https://github.com/tensorflow/models解压后,deeplabv3的工程在路径【./research/dee.原创 2020-11-19 15:53:38 · 1168 阅读 · 2 评论 -
论文阅读 || 语义分割系列 —— deeplabv3+ 详解
论文地址:https://arxiv.org/pdf/1802.02611.pdf1 deeplabv3+ 概述deeplabv3的缺点:输出图放大效果不好,细节信息不够deeplabv3+的改进:【encoder-decoder】+【Xception】+【depthwise deparable conv】encoder-decoder结构:高层特征提供语义,decoder逐步回复边界信息encoder结构:采用deeplabv3,使用ASPP模块获取多尺度的上下文信息(可直接上采样得到.原创 2020-12-02 09:18:27 · 16969 阅读 · 2 评论 -
论文阅读 || 语义分割系列 —— deeplabv3详解
论文链接:https://arxiv.org/abs/1706.055871 deeplabv3的主要贡献我们知道:连续的池化和下采样,使特征分辨率下降,不利于定位全局特征或上下文之间的互相作用有利于语义分割的效果 deeplabv3的主要贡献提出了更通用的框架,适用于更多网络改进了ASPP:由不同采样率的空洞卷、BN层组成,尝试以级联并行的方式设计模块大采样的空洞卷积:使用大采样率的3x3 的空洞卷积,此时由于图像边界响应无法捕捉远距离信号,就会退化成1x1的卷积2 .原创 2020-11-15 14:00:37 · 9907 阅读 · 0 评论 -
论文阅读 || 语义分割系列 —— deeplabv2 详解
论文地址:https://arxiv.org/pdf/1606.00915.pdf1 deeplabv2的概述 主要贡献1 强调使用空洞卷积。作为密集预测任务的强大工具,空洞卷积能够明确的控制 DCNN 内计算特征响应的分辨率。 既可以有效的扩大感受野,在不增加参数量和计算量的同时获取更多的上下文2 提出了 空洞空间卷积池化金字塔(atrous spatial pyramid pooling ( ASPP)),以多尺度的信息得到更强健的分割结果。ASPP并行的采用了多个采样率的空洞卷积层来预测,原创 2020-11-13 16:11:24 · 4494 阅读 · 0 评论 -
论文阅读 || 语义分割系列 —— deeplabv1 详解
论文地址:https://arxiv.org/pdf/1412.7062.pdf1 deeplabv1 的简介使用 DCNN 解决图像分割存在的问题1 下采样:增大感受野。但会导致分辨率的下降,丢失了细节信息2 CNN的空间不变性:根本是源于重复的池化和下采样。3 多个尺度上存在对象(在deeplabv2之后得以解决) deeplabv1的解决方法:1 使用空洞卷积解决下采样的问题:将最后两个池化的 stride=1,不改变特征图的大小(空洞卷积扩大了感受野)2 使用Dense.原创 2020-11-11 14:55:33 · 4000 阅读 · 1 评论