【没有哪个港口是永远的停留~论文解读】DenseNet

本文介绍了Densely Connected Convolutional Networks (DenseNet)的研究,关注深度CNN中信息传播的挑战。论文详细讨论了如何通过创建早期层到后期层的短路径来应对信息消失问题,同时与ResNet的设计理念进行对比。
摘要由CSDN通过智能技术生成

论文地址:Densely Connected Convolutional Networks
代码:https://github.com/liuzhuang13/DenseNet.

开始

随着CNN越来越深,一个新的研究问题出现了:当输入或梯度的信息通过许多层时,当它到达网络的末端(或开始)时,它就会消失。
参考resnet等,它们都有一个关键的特性:它们从早期层到后期层创建短路径。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值