复随机变量
复随机信号
复随机信号
x
\bf{x}
x的概率分布函数pdf为:
p
x
(
x
)
=
p
x
(
x
r
+
j
x
i
)
p_x({\bf{x}}) = p_x(x_r+jx_i)
px(x)=px(xr+jxi)
对函数求其期望值有
g
:
N
→
C
N
g:N{\rightarrow}{C^N}
g:N→CN,其中复随机信号
b
f
x
bf{x}
bfx的取值在定义域
N
N
N中。
E
(
g
(
x
)
)
=
E
(
R
e
[
g
(
x
)
]
)
+
j
E
(
I
m
[
g
(
x
)
]
)
E(g({\bf{x}})) = E(Re[g({\bf{x}})]) + jE(Im[g({\bf{x}})])
E(g(x))=E(Re[g(x)])+jE(Im[g(x)])
一般假设其均值为零。
复随机变量的二阶统计特性
考虑复随机变量
x
=
x
r
+
j
x
i
{\bf{x}}=x_r+jx_i
x=xr+jxi的二阶统计特性。简化表示使用两个实数表示
x
R
=
[
x
r
T
,
x
i
T
]
T
x_R=[x_r^T,x_i^T]^T
xR=[xrT,xiT]T。故其信号的协方差矩阵可以表示为:
C
x
R
x
R
=
E
{
x
R
x
R
T
}
=
[
C
x
r
x
r
C
x
r
x
i
C
x
r
x
i
T
C
x
i
x
i
]
C_{x_{R}x_{R}}=E\left \{x_Rx_R^T \right \}=\begin{bmatrix} C_{x_{r}x_{r}} &C_{x_{r}x_{i}} \\ C_{x_{r}x_{i}}^T & C_{x_{i}x_{i}} \end{bmatrix}
CxRxR=E{xRxRT}=[CxrxrCxrxiTCxrxiCxixi]
对于其增强协方差矩阵
C
a
u
g
=
E
{
x
x
H
}
=
U
N
C
x
R
x
R
U
N
H
=
[
C
x
x
C
~
x
x
C
~
x
x
∗
C
x
x
∗
]
=
C
a
u
g
H
C_{aug}=E\left\{ \bm{x} \bm{x}^H\right\}=\bf{U}_NC_{x_{R}x_{R}}\bf{U}_N^H=\begin{bmatrix} C_{xx}&\tilde{C}_{xx} \\ \tilde{C}_{xx}^* & {C}_{xx}^* \end{bmatrix}=C_{aug}^H
Caug=E{xxH}=UNCxRxRUNH=[CxxC~xx∗C~xxCxx∗]=CaugH
其中Hermit矩阵有
C
x
x
=
E
{
x
x
H
}
=
C
x
r
x
r
+
C
x
i
x
i
+
j
(
C
x
r
x
i
T
−
C
x
i
x
i
)
=
C
x
x
H
C_{xx}=E\left\{ \bm{x} \bm{x}^H\right\}=C_{x_rx_r}+C_{x_ix_i}+j(C_{x_rx_i}^T-C_{x_ix_i})=C_{xx}^H
Cxx=E{xxH}=Cxrxr+Cxixi+j(CxrxiT−Cxixi)=CxxH
C
~
x
x
=
E
{
x
x
T
}
=
C
x
r
x
r
−
C
x
r
x
i
+
j
(
C
x
i
x
i
T
−
C
x
i
x
i
)
=
C
~
x
x
T
\tilde{C}_{xx}=E\left\{ \bm{x} \bm{x}^T\right\}=C_{x_rx_r}-C_{x_rx_i}+j(C_{x_ix_i}^T-C_{x_ix_i})=\tilde{C}_{xx}^T
C~xx=E{xxT}=Cxrxr−Cxrxi+j(CxixiT−Cxixi)=C~xxT
称
C
~
x
x
\tilde{C}_{xx}
C~xx为伪协方差矩阵,当其为零时,其复信号称为不失真信号,反之为失真信号。
可以得到复信号
x
x
x为不失真信号的充分必要条件为复信号的实部
x
r
x_r
xr和虚部
x
i
x_i
xi的协方差矩阵和伪协方差矩阵均满足
C
x
r
x
r
=
C
x
i
x
i
C_{x_rx_r}=C_{x_ix_i}
Cxrxr=Cxixi和
C
x
r
x
i
=
−
C
x
r
x
i
T
C_{x_rx_i}=-C_{x_rx_i}^T
Cxrxi=−CxrxiT
则当其复信号为不失真信号时,其hermit协方差矩阵为
C
x
x
=
2
C
x
r
x
r
−
2
j
C
x
r
x
i
=
2
C
x
i
x
i
+
2
j
C
x
r
x
i
T
C_{xx}=2C_{x_rx_r}-2jC_{x_rx_i}=2C_{x_ix_i}+2jC_{x_rx_i}^T
Cxx=2Cxrxr−2jCxrxi=2Cxixi+2jCxrxiT
同时其如果是一个标量信号时,其信号的方差是虚部方差和实部方差的两倍:
σ
x
2
=
2
σ
x
r
2
=
2
σ
x
i
2
\sigma_x^2=2\sigma_{x_r}^2=2\sigma_{x_i}^2
σx2=2σxr2=2σxi2
当一个复随机变量的概率分布的旋转不变的,则称其为圆的。
可以得到只有当复高斯随机信号
x
x
x为非失真函数且均值为0时其才为圆信号。
圆系数和高斯熵
圆系数
描述圆信号的圆的程度,圆度系数。
近似的求解复信号的非圆度系数和圆度系数:
ρ
=
E
{
x
2
}
E
{
∣
x
2
∣
}
\rho = \frac{E\left\{x^2\right\}}{E\left\{\left | x^2\right |\right\}}
ρ=E{∣x2∣}E{x2}
满足非圆系数
0
<
ρ
<
1
0<\rho<1
0<ρ<1。
当其为圆信号时,
E
{
x
2
}
=
0
E\left\{x^2\right\}=0
E{x2}=0。当非圆程度越高,其
E
{
x
2
}
E\left\{x^2\right\}
E{x2}的值就越接近于
E
{
∣
x
2
∣
}
E\left\{\left | x^2\right |\right\}
E{∣∣x2∣∣}的值,非圆系数越接近于1。
高斯熵
根据香农的信息论,信息熵是描述一个信息的信息量大小和信息的不确定性之间的关系。同样地假设一个离散随机变量
x
x
x,其概率密度函数为
f
(
x
)
f(x)
f(x),根据信息论其自信息量为
I
(
x
)
=
−
log
f
(
x
)
I(x)=-\log{f(x)}
I(x)=−logf(x),其平均信息量为:
H
(
x
)
=
−
∫
f
(
x
)
log
f
(
x
)
d
x
H(x) = -\int{f(x)\log{f(x)}dx}
H(x)=−∫f(x)logf(x)dx
其中
H
(
x
)
H(x)
H(x)被称为随机变量的熵。
对于复随机信号,可以根据上述的定义得到一个含增强协方差矩阵的熵:
H
(
X
)
=
1
2
log
[
(
π
e
)
2
N
det
C
a
u
g
]
H(X)=\frac{1}{2}\log{[(\pi e)^{2N}\det{C_{aug}}]}
H(X)=21log[(πe)2NdetCaug]
其中,
det
C
a
u
g
=
det
2
C
x
x
det
(
1
−
K
K
H
)
=
det
2
C
x
x
∏
n
=
1
N
(
1
−
k
n
2
)
\det{C_{aug}}=\det^2{C_{xx}}\det{(1-KK^H)}=\det^2{C_{xx}}{\prod_{n=1}^{N}}(1-k_n^2)
detCaug=det2Cxxdet(1−KKH)=det2Cxx∏n=1N(1−kn2)
对于一个非圆的复高斯随机信号的熵可以改写为如下公式:
H
n
o
n
c
i
r
=
1
2
log
[
(
π
e
)
2
N
det
C
a
u
g
]
=
log
[
(
π
e
)
2
N
det
C
x
x
]
+
1
2
log
∏
n
=
1
N
(
1
−
k
n
2
)
H_{noncir}=\frac{1}{2}\log{[(\pi e)^{2N}\det{C_{aug}}]}=\log{[(\pi e)^{2N}\det{C_{xx}}]}+\frac{1}{2}\log{{\prod_{n=1}^{N}}(1-k_n^2)}
Hnoncir=21log[(πe)2NdetCaug]=log[(πe)2NdetCxx]+21logn=1∏N(1−kn2)
当复随机信号为圆时,其熵最大。
为了计算的方便和使用,给出另外一个高斯熵的定义方法
- 高斯熵的定义2:假设复随机信号为
x
=
x
R
+
j
x
I
{\bf{x}}=x_R+jx_I
x=xR+jxI,可以得到其熵的定义为:
H ( x ) ≜ H ( x , x ∗ ) = − E { log p ( x , x ∗ ) } H(x)\triangleq H(x,x^*)=-E\left\{\log{p(x,x^*)} \right\} H(x)≜H(x,x∗)=−E{logp(x,x∗)}
将其视为两个独立的随机变量,可以得到其概率密度函数
p ( x ) = p ( x , x ∗ ) = 1 π det Π e x p ( − [ x x ∗ ] H Π − 1 [ x x ∗ ] / 2 ) p(x)=p(x,x^*)=\frac{1}{\pi \sqrt{\det{\Pi} } }exp(-\begin{bmatrix}x\\x^*\end{bmatrix}^H\Pi^{-1}\begin{bmatrix}x\\x^*\end{bmatrix}/2) p(x)=p(x,x∗)=πdetΠ1exp(−[xx∗]HΠ−1[xx∗]/2)
Π = [ E { ∣ x 2 ∣ } E { x 2 } E { ( x 2 ) ∗ } E { ∣ x 2 ∣ } ] \Pi = \begin{bmatrix}E\left\{\left | x^2\right |\right\} &E\left\{x^2\right\}\\ E\left\{(x^2)^*\right\}&E\left\{\left | x^2\right |\right\} \end{bmatrix} Π=[E{∣∣x2∣∣}E{(x2)∗}E{x2}E{∣∣x2∣∣}]
其中 Π \Pi Π是 [ x , x ∗ ] T [x,x^*]^T [x,x∗]T的协方差。将上述两式结合可以得到高斯熵的定义:
H ( x ) ≜ H ( x , x ∗ ) = − E { log p ( x , x ∗ ) } = 1 + log ( π ) + 1 2 [ E 2 { ∣ x 2 ∣ } − ∣ E { x 2 } ∣ 2 ] H(x)\triangleq H(x,x^*)=-E\left\{\log{p(x,x^*)} \right\} \\ =1+\log{(\pi)}+\frac{1}{2}[E^2\left\{\left | x^2\right |\right\} -\left |E\left\{x^2\right\}\right |^2] H(x)≜H(x,x∗)=−E{logp(x,x∗)}=1+log(π)+21[E2{∣∣x2∣∣}−∣∣E{x2}∣∣2]