复随机变量及高斯熵的概念

复随机变量

复随机信号

复随机信号 x \bf{x} x的概率分布函数pdf为:
p x ( x ) = p x ( x r + j x i ) p_x({\bf{x}}) = p_x(x_r+jx_i) px(x)=px(xr+jxi)
对函数求其期望值有 g : N → C N g:N{\rightarrow}{C^N} g:NCN,其中复随机信号 b f x bf{x} bfx的取值在定义域 N N N中。
E ( g ( x ) ) = E ( R e [ g ( x ) ] ) + j E ( I m [ g ( x ) ] ) E(g({\bf{x}})) = E(Re[g({\bf{x}})]) + jE(Im[g({\bf{x}})]) E(g(x))=E(Re[g(x)])+jE(Im[g(x)])
一般假设其均值为零。

复随机变量的二阶统计特性

考虑复随机变量 x = x r + j x i {\bf{x}}=x_r+jx_i x=xr+jxi的二阶统计特性。简化表示使用两个实数表示 x R = [ x r T , x i T ] T x_R=[x_r^T,x_i^T]^T xR=[xrT,xiT]T。故其信号的协方差矩阵可以表示为:
C x R x R = E { x R x R T } = [ C x r x r C x r x i C x r x i T C x i x i ] C_{x_{R}x_{R}}=E\left \{x_Rx_R^T \right \}=\begin{bmatrix} C_{x_{r}x_{r}} &C_{x_{r}x_{i}} \\ C_{x_{r}x_{i}}^T & C_{x_{i}x_{i}} \end{bmatrix} CxRxR=E{xRxRT}=[CxrxrCxrxiTCxrxiCxixi]
对于其增强协方差矩阵
C a u g = E { x x H } = U N C x R x R U N H = [ C x x C ~ x x C ~ x x ∗ C x x ∗ ] = C a u g H C_{aug}=E\left\{ \bm{x} \bm{x}^H\right\}=\bf{U}_NC_{x_{R}x_{R}}\bf{U}_N^H=\begin{bmatrix} C_{xx}&\tilde{C}_{xx} \\ \tilde{C}_{xx}^* & {C}_{xx}^* \end{bmatrix}=C_{aug}^H Caug=E{xxH}=UNCxRxRUNH=[CxxC~xxC~xxCxx]=CaugH
其中Hermit矩阵有
C x x = E { x x H } = C x r x r + C x i x i + j ( C x r x i T − C x i x i ) = C x x H C_{xx}=E\left\{ \bm{x} \bm{x}^H\right\}=C_{x_rx_r}+C_{x_ix_i}+j(C_{x_rx_i}^T-C_{x_ix_i})=C_{xx}^H Cxx=E{xxH}=Cxrxr+Cxixi+j(CxrxiTCxixi)=CxxH
C ~ x x = E { x x T } = C x r x r − C x r x i + j ( C x i x i T − C x i x i ) = C ~ x x T \tilde{C}_{xx}=E\left\{ \bm{x} \bm{x}^T\right\}=C_{x_rx_r}-C_{x_rx_i}+j(C_{x_ix_i}^T-C_{x_ix_i})=\tilde{C}_{xx}^T C~xx=E{xxT}=CxrxrCxrxi+j(CxixiTCxixi)=C~xxT
C ~ x x \tilde{C}_{xx} C~xx为伪协方差矩阵,当其为零时,其复信号称为不失真信号,反之为失真信号。
可以得到复信号 x x x为不失真信号的充分必要条件为复信号的实部 x r x_r xr和虚部 x i x_i xi的协方差矩阵和伪协方差矩阵均满足 C x r x r = C x i x i C_{x_rx_r}=C_{x_ix_i} Cxrxr=Cxixi C x r x i = − C x r x i T C_{x_rx_i}=-C_{x_rx_i}^T Cxrxi=CxrxiT
则当其复信号为不失真信号时,其hermit协方差矩阵为
C x x = 2 C x r x r − 2 j C x r x i = 2 C x i x i + 2 j C x r x i T C_{xx}=2C_{x_rx_r}-2jC_{x_rx_i}=2C_{x_ix_i}+2jC_{x_rx_i}^T Cxx=2Cxrxr2jCxrxi=2Cxixi+2jCxrxiT
同时其如果是一个标量信号时,其信号的方差是虚部方差和实部方差的两倍:
σ x 2 = 2 σ x r 2 = 2 σ x i 2 \sigma_x^2=2\sigma_{x_r}^2=2\sigma_{x_i}^2 σx2=2σxr2=2σxi2
当一个复随机变量的概率分布的旋转不变的,则称其为圆的。
可以得到只有当复高斯随机信号 x x x为非失真函数且均值为0时其才为圆信号。

圆系数和高斯熵

圆系数

描述圆信号的圆的程度,圆度系数。
近似的求解复信号的非圆度系数和圆度系数:
ρ = E { x 2 } E { ∣ x 2 ∣ } \rho = \frac{E\left\{x^2\right\}}{E\left\{\left | x^2\right |\right\}} ρ=E{x2}E{x2}
满足非圆系数 0 < ρ < 1 0<\rho<1 0<ρ<1
当其为圆信号时, E { x 2 } = 0 E\left\{x^2\right\}=0 E{x2}=0。当非圆程度越高,其 E { x 2 } E\left\{x^2\right\} E{x2}的值就越接近于 E { ∣ x 2 ∣ } E\left\{\left | x^2\right |\right\} E{x2}的值,非圆系数越接近于1。

高斯熵

根据香农的信息论,信息熵是描述一个信息的信息量大小和信息的不确定性之间的关系。同样地假设一个离散随机变量 x x x,其概率密度函数为 f ( x ) f(x) f(x),根据信息论其自信息量为 I ( x ) = − log ⁡ f ( x ) I(x)=-\log{f(x)} I(x)=logf(x),其平均信息量为:
H ( x ) = − ∫ f ( x ) log ⁡ f ( x ) d x H(x) = -\int{f(x)\log{f(x)}dx} H(x)=f(x)logf(x)dx
其中 H ( x ) H(x) H(x)被称为随机变量的熵。
对于复随机信号,可以根据上述的定义得到一个含增强协方差矩阵的熵:
H ( X ) = 1 2 log ⁡ [ ( π e ) 2 N det ⁡ C a u g ] H(X)=\frac{1}{2}\log{[(\pi e)^{2N}\det{C_{aug}}]} H(X)=21log[(πe)2NdetCaug]
其中, det ⁡ C a u g = det ⁡ 2 C x x det ⁡ ( 1 − K K H ) = det ⁡ 2 C x x ∏ n = 1 N ( 1 − k n 2 ) \det{C_{aug}}=\det^2{C_{xx}}\det{(1-KK^H)}=\det^2{C_{xx}}{\prod_{n=1}^{N}}(1-k_n^2) detCaug=det2Cxxdet(1KKH)=det2Cxxn=1N(1kn2)

对于一个非圆的复高斯随机信号的熵可以改写为如下公式:
H n o n c i r = 1 2 log ⁡ [ ( π e ) 2 N det ⁡ C a u g ] = log ⁡ [ ( π e ) 2 N det ⁡ C x x ] + 1 2 log ⁡ ∏ n = 1 N ( 1 − k n 2 ) H_{noncir}=\frac{1}{2}\log{[(\pi e)^{2N}\det{C_{aug}}]}=\log{[(\pi e)^{2N}\det{C_{xx}}]}+\frac{1}{2}\log{{\prod_{n=1}^{N}}(1-k_n^2)} Hnoncir=21log[(πe)2NdetCaug]=log[(πe)2NdetCxx]+21logn=1N(1kn2)
当复随机信号为圆时,其熵最大。
为了计算的方便和使用,给出另外一个高斯熵的定义方法

  • 高斯熵的定义2:假设复随机信号为 x = x R + j x I {\bf{x}}=x_R+jx_I x=xR+jxI,可以得到其熵的定义为:
    H ( x ) ≜ H ( x , x ∗ ) = − E { log ⁡ p ( x , x ∗ ) } H(x)\triangleq H(x,x^*)=-E\left\{\log{p(x,x^*)} \right\} H(x)H(x,x)=E{logp(x,x)}
    将其视为两个独立的随机变量,可以得到其概率密度函数
    p ( x ) = p ( x , x ∗ ) = 1 π det ⁡ Π e x p ( − [ x x ∗ ] H Π − 1 [ x x ∗ ] / 2 ) p(x)=p(x,x^*)=\frac{1}{\pi \sqrt{\det{\Pi} } }exp(-\begin{bmatrix}x\\x^*\end{bmatrix}^H\Pi^{-1}\begin{bmatrix}x\\x^*\end{bmatrix}/2) p(x)=p(x,x)=πdetΠ 1exp([xx]HΠ1[xx]/2)
    Π = [ E { ∣ x 2 ∣ } E { x 2 } E { ( x 2 ) ∗ } E { ∣ x 2 ∣ } ] \Pi = \begin{bmatrix}E\left\{\left | x^2\right |\right\} &E\left\{x^2\right\}\\ E\left\{(x^2)^*\right\}&E\left\{\left | x^2\right |\right\} \end{bmatrix} Π=[E{x2}E{(x2)}E{x2}E{x2}]
    其中 Π \Pi Π [ x , x ∗ ] T [x,x^*]^T [x,x]T的协方差。将上述两式结合可以得到高斯熵的定义:
    H ( x ) ≜ H ( x , x ∗ ) = − E { log ⁡ p ( x , x ∗ ) } = 1 + log ⁡ ( π ) + 1 2 [ E 2 { ∣ x 2 ∣ } − ∣ E { x 2 } ∣ 2 ] H(x)\triangleq H(x,x^*)=-E\left\{\log{p(x,x^*)} \right\} \\ =1+\log{(\pi)}+\frac{1}{2}[E^2\left\{\left | x^2\right |\right\} -\left |E\left\{x^2\right\}\right |^2] H(x)H(x,x)=E{logp(x,x)}=1+log(π)+21[E2{x2}E{x2}2]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值