高斯分布的熵

高斯分布的熵很简单:
H [ N ( μ , σ 2 ) ] = − ∫ x 1 2 π σ e − ( x − μ ) 2 2 σ 2 log ⁡ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = − ∫ x 1 2 π σ e − ( x − μ ) 2 2 σ 2 [ − 1 2 log ⁡ 2 π σ 2 − ( x − μ ) 2 2 σ 2 ] d x = 1 2 log ⁡ 2 π σ 2 + 1 2 σ 2 ∫ x ( x − μ ) 2 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = 1 2 log ⁡ 2 π σ 2 + σ 2 2 σ 2 = 1 2 log ⁡ 2 π e σ 2 \begin{aligned} H[\mathcal{N}(\mu, \sigma^2)] &= -\int_x \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \log \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx \\ &= -\int_x \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \Bigg[ -\frac{1}{2}\log 2\pi \sigma^2 - \frac{(x-\mu)^2}{2\sigma^2} \Bigg] dx \\ &= \frac{1}{2}\log 2\pi \sigma^2 + \frac{1}{2\sigma^2} \int_x (x-\mu)^2\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx \\ &= \frac{1}{2}\log 2\pi \sigma^2 + \frac{\sigma^2}{2\sigma^2} \\ &= \frac{1}{2}\log 2\pi e \sigma^2 \end{aligned} H[N(μ,σ2)]=x2π σ1e2σ2(xμ)2log2π σ1e2σ2(xμ)2dx=x2π σ1e2σ2(xμ)2[21log2πσ22σ2(xμ)2]dx=21log2πσ2+2σ21x(xμ)22π σ1e2σ2(xμ)2dx=21log2πσ2+2σ2σ2=21log2πeσ2

多元高斯分布的熵:
H [ N ( x ∣ μ , Σ ) ] = − ∫ x 1 ⋯ ∫ x K 1 ( 2 π ) K 2 ∣ Σ ∣ 1 2 e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) log ⁡ 1 ( 2 π ) K 2 ∣ Σ ∣ 1 2 e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) d x 1 ⋯ d x K = ∫ x 1 ⋯ ∫ x K 1 ( 2 π ) K 2 ∣ Σ ∣ 1 2 e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) [ log ⁡ ( 2 π ) K 2 ∣ Σ ∣ 1 2 + 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ] d x 1 ⋯ d x K \begin{aligned} H[\mathcal{N}(x | \mu, \Sigma)] &= -\int_{x_1} \cdots \int_{x_K} \frac{1}{(2\pi)^\frac{K}{2} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu)} \log \frac{1}{(2\pi)^\frac{K}{2} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu)} dx_1 \cdots dx_K \\ &= \int_{x_1} \cdots \int_{x_K} \frac{1}{(2\pi)^\frac{K}{2} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu)} \Bigg[ \log (2\pi)^\frac{K}{2} |\Sigma|^{\frac{1}{2}} + \frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu) \Bigg] dx_1 \cdots dx_K \end{aligned} H[N(xμ,Σ)]=x1xK(2π)2KΣ211e21(xμ)TΣ1(xμ)log(2π)2KΣ211e21(xμ)TΣ1(xμ)dx1dxK=x1xK(2π)2KΣ211e21(xμ)TΣ1(xμ)[log(2π)2KΣ21+21(xμ)TΣ1(xμ)]dx1dxK
其中第二项:
∫ x 1 ⋯ ∫ x K 1 ( 2 π ) K 2 ∣ Σ ∣ 1 2 e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) 1 2 ( x − μ ) T Σ − 1 ( x − μ ) d x 1 ⋯ d x K = 1 2 ∫ x 1 ⋯ ∫ x K 1 ( 2 π ) K 2 ∣ Σ ∣ 1 2 e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) t r [ Σ − 1 ( x − μ ) ( x − μ ) T ] d x 1 ⋯ d x K = 1 2 t r { Σ − 1 ∫ x 1 ⋯ ∫ x K 1 ( 2 π ) K 2 ∣ Σ ∣ 1 2 e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ( x x T − μ x T − x μ T + μ μ T ) d x 1 ⋯ d x K } = 1 2 t r ( Σ − 1 ( Σ + μ μ T − μ μ T − μ μ T + μ μ T ) ) = 1 2 t r ( I ) = K 2 \begin{aligned} &\int_{x_1} \cdots \int_{x_K} \frac{1}{(2\pi)^\frac{K}{2} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu)} \frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu) dx_1 \cdots dx_K \\ &= \frac{1}{2} \int_{x_1} \cdots \int_{x_K} \frac{1}{(2\pi)^\frac{K}{2} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu)} tr[ \Sigma^{-1} (x - \mu) (x - \mu)^T ] dx_1 \cdots dx_K \\ &= \frac{1}{2} tr \Bigg\{ \Sigma^{-1} \int_{x_1} \cdots \int_{x_K} \frac{1}{(2\pi)^\frac{K}{2} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu)} (xx^T - \mu x^T - x \mu^T + \mu \mu^T ) dx_1 \cdots dx_K \Bigg\} \\ &= \frac{1}{2} tr( \Sigma^{-1}( \Sigma + \mu \mu^T - \mu \mu^T - \mu \mu^T + \mu \mu^T) ) \\ &= \frac{1}{2} tr(I) = \frac{K}{2} \end{aligned} x1xK(2π)2KΣ211e21(xμ)TΣ1(xμ)21(xμ)TΣ1(xμ)dx1dxK=21x1xK(2π)2KΣ211e21(xμ)TΣ1(xμ)tr[Σ1(xμ)(xμ)T]dx1dxK=21tr{Σ1x1xK(2π)2KΣ211e21(xμ)TΣ1(xμ)(xxTμxTxμT+μμT)dx1dxK}=21tr(Σ1(Σ+μμTμμTμμT+μμT))=21tr(I)=2K

整理最终结果:
H [ N ( x ∣ μ , Σ ) ] = K 2 ( log ⁡ 2 π + 1 ) + 1 2 log ⁡ ∣ Σ ∣ \begin{aligned} H[\mathcal{N}(x | \mu, \Sigma)] = \frac{K}{2} (\log 2\pi + 1) + \frac{1}{2} \log |\Sigma| \end{aligned} H[N(xμ,Σ)]=2K(log2π+1)+21logΣ

  • 13
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值