题目:
Given a list of words and two words word1 and word2, return the shortest distance between these two words in the list.
For example,
Assume that words = ["practice", "makes", "perfect", "coding", "makes"].
Given word1 = “coding”, word2 = “practice”,
 return 3.
Given word1 = "makes", word2 = "coding",
 return 1.
Note:
You may assume that word1 does not equal to word2, and word1 and word2 are both in the list.
思路:
注意到word1和word2有可能在字典里面出现多次,我们可以用哈希表保存一个单词的多个位置,然后枚举最小距离。假设word1在words中出现了m次,word2在words中出现了n次,则枚举需要O(m*n)的时间复杂度,可是由于位置索引都是单调递增的,所以我们可以采用一个小技巧将时间复杂度降低到O(m+n)。这里卖个关子,大家看看下面的代码实现^_^。
代码:
class Solution {
public:
    int shortestDistance(vector<string>& words, string word1, string word2) {
        unordered_map<string, vector<int>> hash;
        for (int i = 0; i < words.size(); ++i) {
            hash[words[i]].push_back(i);
        }
        int i = 0, j = 0, ret = INT_MAX;
        while (i < hash[word1].size() && j < hash[word2].size()) {
            ret = min(ret, abs(hash[word1][i] - hash[word2][j]));
            hash[word1][i] < hash[word2][j] ? ++i : ++j;
        }
        return ret;
    }
}; 
                   
                   
                   
                   
                             本文介绍了一种高效算法,用于求解给定单词列表中两个特定单词之间的最短距离。通过使用哈希表记录每个单词的所有出现位置,并利用这些位置进行比较,可以将时间复杂度从O(m*n)优化到O(m+n),显著提高了算法效率。
本文介绍了一种高效算法,用于求解给定单词列表中两个特定单词之间的最短距离。通过使用哈希表记录每个单词的所有出现位置,并利用这些位置进行比较,可以将时间复杂度从O(m*n)优化到O(m+n),显著提高了算法效率。
           
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   360
					360
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            