算法
文章平均质量分 91
magicnumber
这个作者很懒,什么都没留下…
展开
-
[统计学习方法]感知机
1.感知机模型其中w和b为感知机模型的参数,w为权值向量,b为偏置,sign为符号函数,当x大于等于0时,sign(x)=+1,否则sign(x)=-1。感知器模型是用来解决二元分类的模型,即输入是特征向量,输出是类别(取+1和-1两个值),例如,给定银行客户的基本信息(性别,年龄,年薪等等,称为特征向量),输出为是否发信用卡(是:+1,否:-1),或者是判别一封邮件是否是垃圾原创 2014-12-21 15:56:52 · 1877 阅读 · 1 评论 -
聪明的学生问题
第一次碰见这种诡异的问题是大一下学期在看黑书的时候看到的,内容是这样的: 一位教授逻辑学的教授有三名非常善于推理且精于心算的学生A、B、C。有一天,教授给他们三人出了一道题:教授在每个人的脑门上贴了一张纸条并告诉他们,每个人的纸条上都写着一个正整数,且某两个数的和等于第三个。于是每个学生都能看见贴在另外两个同学头上的整数,却看不见自己的数。 这时,教授先对A学生发问了:“你能猜出自己的数吗原创 2016-10-13 01:29:50 · 2056 阅读 · 2 评论 -
约瑟夫问题
今天闲着无聊整理下《具体数学》中关于约瑟夫问题的讨论。 nn个人围成一圈,从11到nn标号,每隔一个人处死一个人,求最后幸存下来的人的编号,例如n=10n=10,则被杀的人按顺序依次是: 2,4,6,8,10,3,7,1,92,4,6,8,10,3,7,1,9当然可以直接模拟杀人的过程直到剩下最后一个,但这种方法不够快。可以考虑递归做法,如果杀了一圈,那么这个时候我们可原创 2015-08-26 14:52:21 · 1464 阅读 · 1 评论 -
直线分割平面问题
看了一下具体数学的1.2章,整理了一下关于一个平面被分割的部分多少的问题先考虑第一个小问题:一个平面能被n条直线最多分成多少个部分?假设用L来表示答案,那么有最优的分法可以考虑是:1. 没有两条直线互相平行2. 没有三线共点也就是说,如果现在有一个n条线的最优情况,我要新加第n+1条线,让他顺次穿过前n条线,即穿过了n+1个部分,即增加了n+原创 2015-01-27 20:25:26 · 3631 阅读 · 3 评论 -
[统计学习方法]决策树
决策树其实就是一个if-else的集合,在应用中,如果给定一个输入,不断的通过if-else的判断,可以得到理想的输出。对应到树上,也就是每一个节点是一个判断条件,而是否满足这个判断条件决定了该走到这个节点的哪一个子节点。而叶子节点决定了这个分支的输出应该是什么。那么在应用中,给定一个输入,从根节点不断往叶节点走,走到叶节点,就知道输出该是什么了。那么关键问题在于,这颗树该如何得到。决策树学习什么是原创 2015-03-08 20:47:36 · 2652 阅读 · 0 评论 -
[统计学习方法]朴素贝叶斯法
贝叶斯定理其实贝叶斯定理就是一个条件概率公式的变形,即 P(XY)=P(X|Y)∗P(Y)=P(Y|X)∗P(X)P(XY) = P(X|Y) * P(Y) = P(Y|X) * P(X) 整理后可得, P(Y|X)=P(X|Y)P(Y)P(X)P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}这么一变之后,我们就可以根据这个公式回答很多问题,例如,假设事件Y原创 2015-03-02 22:16:59 · 1633 阅读 · 1 评论 -
平方和到幂和
之前看到这一篇文章,然后我发给开妹看,他问我,小学要怎么推导出平方和公式,然后我就开始了尝试…… 在这之前,先放两幅图意思一下 这两幅图是我从《proof without words》中截下来的,当然,他们是一个美妙的证明,但是要说,跟数学归纳法一样,这两幅图更多的让人感觉是一种已知结果,而去验证结果的证明,要怎么才能一步步推导出平方和公式呢? 在《具体数学》中,作者其实专门整理了各种推算原创 2015-02-12 17:38:44 · 1264 阅读 · 1 评论 -
PageRank算法
以前几个人为了应付生产实习验收,做了个渣渣搜索引擎,现在发现,那简直渣死了。稍微看了下《Mining of Massive Datasets》关于PageRank的描述,稍微整理一下。1. 早期搜索引擎通过倒排索引的方法得到页面所含的词项(term),也就是一个词在哪些网页中出现,以及所在位置。当有查询时,根据查询的词在页面中出现的位置以及次数给出一个结果的排序。 这种算法在现在看来是十分荒唐的,原创 2015-02-16 19:08:45 · 2579 阅读 · 0 评论 -
[统计学习方法]K近邻法
1.K近邻算法(K-NN)给一个点,现在希望找出距离某个点最近的K个点,这个是很有意义的,因为这样可以知道该点属于哪一类(看距离他近的点大多属于哪类)。所以其实该算法也就是一种预处理数据,以此来加速查询。如果用式子来表示,那就是:原创 2015-01-11 20:47:12 · 1206 阅读 · 3 评论 -
[Stanford Cryptography I] Week1
纠结了一阵子,还是打算啃一啃这门课,不过能啃到哪里我就不清楚了。另外,还是要不时做点笔记什么的。基本概念:K:所有可能的密钥(密钥空间)M:所有可能的明文C:所有可能的密文E:加密算法D:揭秘算法因此可以得到: E(k, m)=c 密钥和明文通过加密算法得到密文D(k, c)=m 密钥和密文通过加密算法得到明文对所有 的明文m,密钥k,D(k, E(k,原创 2015-01-26 21:55:38 · 1736 阅读 · 0 评论 -
单变量最优值求解问题
背景讨论目标函数为一元单值函数f:R→Rf: R\rightarrow R时的最小化优化问题通过迭代求解得到结果这些方法统称为一维搜索法或线性搜索法这是多变量问题求解的特例,也是多变量问题求解的算法的一部分主要逻辑为从初始搜索点x(0)x^{(0)}开始,产生一个迭代序列x(1)x^{(1)}, x(2),...x^{(2)}, ...,在第k=0,1,2,...k=0,1,2,...次迭原创 2017-06-11 14:30:54 · 4657 阅读 · 0 评论