本人做了几道树的直径的题,有点感觉,现总结几条二级定理/引理/结论:
1.如果一棵树存在多条直径,则树上必存在一点 p,使得所有直径均经过该点(简单来说,所有直径必交于至少一点)。
2.多条直径的中点(不一定为整点,可能在边上)为同一点。
3.如果存在多条直径,则两两的重边都相同。
4.直径的重边的端点到非重叠部分的端点的边长(不经过重边)都相等。
5.树的直径的端点u和直径上任意一点p的距离一定大于p和u之间的点分出的最远的点v到p的距离。
6.未完待续
本人做了几道树的直径的题,有点感觉,现总结几条二级定理/引理/结论:
1.如果一棵树存在多条直径,则树上必存在一点 p,使得所有直径均经过该点(简单来说,所有直径必交于至少一点)。
2.多条直径的中点(不一定为整点,可能在边上)为同一点。
3.如果存在多条直径,则两两的重边都相同。
4.直径的重边的端点到非重叠部分的端点的边长(不经过重边)都相等。
5.树的直径的端点u和直径上任意一点p的距离一定大于p和u之间的点分出的最远的点v到p的距离。
6.未完待续