给你一个整数 n
,返回 和为 n
的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1
、4
、9
和 16
都是完全平方数,而 3
和 11
不是。
示例 1:
输入:n =12
输出:3 解释:12 = 4 + 4 + 4
示例 2:
输入:n =13
输出:2 解释:13 = 4 + 9
提示:
1 <= n <= 104
动态规划:对于i,完全平方数最大数量为nums[i]=i,即全为1。
如果存在j使得nums[i]=nums[i-j*j]+1,则完全平方数量变为nums[i-j*j]+1
class Solution {
public:
int numSquares(int n) {
std::vector<int> nums(n+1, 0);
for (int i = 1; i <= n; i++) {
nums[i] = i;
for (int j = 1; i - j * j >= 0; j++) {
nums[i] = std::min(nums[i], nums[i - j * j] + 1);
}
}
return nums[n];
}
};