智能中医舌诊:图像识别技术在传统医学中的应用

引言

在中医的丰富宝库中,望诊是诊断疾病的重要手段,其中面部色泽和舌象的观察尤为关键。面部色泽的变化被认为是气血盛衰的外在表现,而舌象则是反映内脏变化的直观“窗口”。随着人工智能技术的飞速发展,将AI应用于中医舌面诊已成为研究的热点,本文将详细介绍这一技术的原理、实现方法以及临床应用。

中医望诊的传统理论基础

中医望诊有着悠久的历史,其理论基础源自《黄帝内经》等古代医学典籍。面部色泽与舌象的观察是望诊中的重要组成部分。面部色泽的变化不仅能够反映气血的盛衰,还能揭示病邪的性质和疾病的部位。舌象的观察则更为细致,包括舌质的颜色、形态、舌苔的分布等,这些特征与脏腑功能、气血津液等紧密相关。

人工智能在中医望诊中的应用

人工智能技术的引入为中医望诊带来了革命性的变化。通过图像识别技术,AI能够对舌象进行更精准的分析,减少人为因素的干扰,提高诊断的客观性和准确性。目前,已有多项研究在这一领域取得了显著成果。

研究进展

- 李福凤等人通过最小偏差法和线性判别式分析相结合的方法,在多个色彩空间中进行实验,找到了面部光泽识别的最佳空间和模型,取得了89%的高准确率。

- 陆萍等人利用神经网络分析中医面诊证素辨证,构造了一个高效经济的基于证素辨证的面诊神经网络结构。

- 沈兰荪等人利用图像分析技术研究中医舌诊客观化,提出了舌体区域分割、裂纹分析、舌苔和舌质特征分析等一套算法,并通过临床证明了其有效性。

舌面诊技术的基本原理与系统架构

基于图像识别的中医舌面诊技术,通过全方位识别患者的舌、面等多种症状,为医生提供高可靠性的临床诊疗参考。该技术的核心在于三个子系统:面象诊断系统、舌象诊断系统和图像预处理系统。

面象诊断系统

面象诊断系统进一步细分为眼睑浮肿识别、面部光泽识别、川字眉识别、双眼皮识别、脸型识别、眉毛浓淡识别和唇厚薄识别等七个子系统。这些子系统通过识别面部不同区域的特征,为诊断提供多维度的信息。

舌象诊断系统

舌象诊断系统则包括苔色识别、苔腻识别、舌体胖瘦识别、裂纹识别和齿痕识别等五个子系统。这些子系统专注于舌象的细致分析,以识别和区分不同的病理变化。

(舌面诊断系统架构)

基本原理

首先,通过目标检测算法识别人脸和舌头区域,获得人脸区域和舌头区域的外接矩形框;然后,对获得的人脸区域和舌头区域进行具体部位的提取。系统识别到人脸区域进行特征点回归的操作获得人脸的特征点信息,同时对人脸区域进行实例分割获得眉毛、眼睛、鼻子、嘴唇、皮肤、头发、耳朵、口、脖子等,系统对识别到的舌体区域进行舌体分割,获得没有背景干扰的舌体,提高舌诊的精度,用于后续的舌诊计算机识别;然后,系统根据提取到的实例图片和面部特征点等多种信息对舌面特征进行预测;最后,可视化预测结果。

(舌面系统处理流程)

研究过程中,通过对舌面图像定位,去噪,采用先进深度学习技术实现对患者的舌苔,舌质,面象等多种特征的精准识别,为医生提供可靠的临床诊疗意见,提升诊断的效率和准确性。

(舌面诊研究过程)

技术实现与核心模块

图像质量检测

根据舌面图像的具体情况进行色彩校正,光照还原,模糊检测,高频信息滤波等预处理。图像在拍摄过程中,由于光照、抖动、雾等一系列因素可能使图像质量过差。所以,通过图像预处理模块,减少或者去除这些不利因素对图像质量造成的影响。

基于Laplacian高频信息的模糊图像检测:模糊的图像具有很少的高频信息和大量的低频信息。纹理,材质等属于图像的低频信息,轮廓,边缘等属于图像的高频信息。因此通过评估高频信息能够简单有效地反映图像的模糊程度。Laplacian算子是一种二阶微分算子,常被用于提取图像的高频信息。Laplacian算子做模糊检测的具体流程分三步。首先,彩色图片转换为灰度图像;其次,对灰度图像进行4领域的Laplacian算子滤波,提取高频图像;最后,计算高频图像的标准差σ,当σ小于一定的阈值时,则该图像模糊,否则该图像清晰。

基于导向滤波的图像去噪:去噪算法主要是去除图片中存在的噪声,本系统使用的去噪算法有传统的高斯滤波和导向滤波。导向滤波是一种包边滤波器,能够在去噪的同时保留边缘高频信息,导向滤波的指导图片为待滤波图片的灰度图。该方法能够很好的去除雾天图片的影响。

面象特征分析

面象诊断系统包含了7个子系统,分别为:眼睑浮肿识别系统、面部光泽识别系统、川字眉识别系统、双眼皮识别系统、脸型识别系统、眉毛浓淡识别系统和唇厚薄识别系统。

人脸关键点检测是人脸识别和分析领域中的关键一步,它是诸如人脸识别、面部情感分析、三维人脸重建及三维动画等其它人脸相关问题的前提和突破口。系统对识别到的人脸区域进行特征点回归操作获得人脸的特征点信息,同时对人脸区域进行实例分割获得眉、眼、鼻、唇、发、耳、口、颈等。由于人脸图片特征点标注工作需要耗费大量的资源,因此系统采用无监督的面部特征点回归算法,在只有少量标注的情况下,充分考虑未标注图片的信息,提高算法的回归精度和识别准确率。

舌象特征分析

舌象诊断识别系统包含5个子系统,分别为:苔色识别系统、苔腻识别系统、舌体胖瘦识别系统、裂纹识别系统和齿痕识别系统。

由R-CNN和Fast RCNN算法发展而来的Faster RCNN算法是目前主流的目标检测算法。Faster RCNN将特征提取,候选区域抽取,特征金字塔网络,目标框回归,分类等整合到一个深度网络中,相比之前的RCNN类网络,很好的平衡了检测精度和检测速度,综合性能提升明显。本项目Faster RCNN的特征抽取层采用了更加轻量级的FBNet网络,检测速度有了更进一步提高。训练数据来源于基层医生采集的真实舌面数据,标注工作由具有中医临床知识的中医师进行标注。当高质量图片输入后,算法会返回图片中所有的舌面坐标信息。

临床应用

基于图像识别的中医舌面诊技术在临床上具有广泛的应用前景。与传统的舌面望诊相比,该技术能够提供更快速、更准确的诊断结果,减少因医生主观判断带来的误差。系统可以通过患者的舌、面图片,快速预测中医舌面特征有:眼睑浮肿、面部光泽、川字眉、眼皮层数、脸型、眉毛浓淡、唇厚薄、苔色、苔腻、舌体胖瘦、裂纹和齿痕。帮助医师在门诊过程中提升效率、准确率。

产品示例

产品的设计以用户友好性为核心,用户只需简单三步操作——拍摄舌部、面部照片,上传系统检测,即可生成中医体质报告。检测的有效率可以达到90%以上,为用户提供了一种快速、准确的健康评估工具。

个性化健康管理

在提供体质报告的同时,系统还能够根据商家的产品进行个性化定制,支持在用户的体质基础上推荐相应的茶饮产品、保健产品或专科医生,并关联销售路径。这种对应关系建立在专业的中医理论基础上,通过科学的方法与体质相匹配。

开放API与技术支持

为了进一步推动中医舌面诊技术的普及和应用,现已开放API,方便集成到网页、app、小程序等平台。我们提供专业的医学保障和技术支持,欢迎各界人士使用和合作。

(阿里云市场可直接对接)

结语

基于图像识别的中医舌面诊技术,是传统中医与现代科技的完美结合。这一技术的发展和应用,不仅能够提升中医诊疗的效率和准确性,还能够推动中医在全球范围内的传播和认可。随着技术的不断进步,我们期待这一技术在未来能够为更多患者带来福音。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值