第一种问题和方法
有三个变量 x 1 , x 2 , x 3 \ x_1,x_2,x_3 x1,x2,x3
生成满足约束的值:
x 1 + x 2 + x 3 = n \ x_1+x_2+x_3=n x1+x2+x3=n
a 1 < x 1 < b 1 , a 2 < x 2 < b 2 , a 3 < x 3 < b 3 \ a_1<x_1<b_1 , a_2<x_2<b_2,a_3<x_3<b_3 a1<x1<b1,a2<x2<b2,a3<x3<b3
思路:
1、 a 3 < x 3 < b 3 \ a_3<x_3<b_3 a3<x3<b3,所以 a 3 < n − x 1 − x 2 < b 3 \ a_3<n-x_1-x_2<b_3 a3<n−x1−x2<b3
2、由1得, n − x 1 − b 3 < x 2 < n − x 1 − a 3 \ n-x_1-b_3<x_2<n-x_1-a_3 n−x1−b3<x2<n−x1−a3
3、由2得, n − x 1 − b 3 > a 2 , n − x 1 − a 3 < b 2 \ n-x_1-b_3>a_2,n-x_1-a_3<b_2 n−