微调Stable Diffusion生成你专属的毛利兰

最近在研究AIGC🤖️技术,看了很多微调方法、论文层。但搞技术这么能纸上谈兵呢?今天本柯南迷就想来实践生成美少女小兰👸

在这篇文章里,我选用了 textual inversion和dreambooth📷来做比较,这两种方法都是通过扩大词字典的嵌入,来插入新的概念。

训练图片处理

image.png 在网上找到了11张高清的小兰🌸特写图,尽量找人物主体比较鲜明的图片,这样才能让模型更好地学习到人物特征~ 为了图片不因为resize而变形,这里使用letterbox方法将图片先处理为512×512大小的尺寸:


def letterbox_image(image, size=(512, 512), color=(0, 0, 0), scale=False):
    iw, ih = image.size
    w, h = size

    scale = min(w / iw, h / ih)
    nw = int(iw * scale)
    nh = int(ih * scale)

    image = image.resize((nw, nh), Image.BICUBIC)
    new_image = Image.new('RGB', size, color)
    new_image.paste(image, ((w - nw) // 2, (h - nh) // 2))
    return new_image


到这一步,我们需要训练的人物主体数据就处理好啦~

dreambooth微调

dreambooth的效果类似于照相摄影棚——一旦拍摄了几张某个对象的照片,摄影棚就会生成包含该对象在不同条件和场景下的照片。 dreambooth的目标是扩展模型的语言视觉词典,一旦新词典嵌入模型,模型就可以在不同的背景场景下生成新词主题,同时保留其关键识别特征。

这个新词可以用标识符(identifier)来表示,为了防止语言漂移,需要在标识符的后面加入这个新词的大类,比如:“A [V] dog”,[V]为标识符,dog为大类。

image.png

为了防止语言漂移,研究者提出了 Class-specific Prior Preservation Loss

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值