LASSO

LASSO回归是一种适用于严重多重共线性的回归算法,介于线性回归和岭回归之间。它通过惩罚项的绝对值变化,解决了岭回归的某些局限,尤其在样本量较大时,能有效找出正确的模型。LASSO的独特之处在于它允许部分回归系数为0,且在适当条件下能高概率选择正确的自变量。实现LASSO时,通常需要进行标准化处理,并通过交叉验证选择合适的惩罚参数k。
摘要由CSDN通过智能技术生成

Why

表现强劲的回归算法。可以把它看作是介于普通线性回归(对严重多重共线性无力)和岭回归\PLS PLA(专门解决严重多重共线性)之间的一种通用的回归算法。它允许严重多重共线性,但要求多重共线性满足特定条件,即对 Y 无关的 xi 们之间怎么严重的多重共线性都行,只要不对和 Y 有关的自变量有多重共线性即可(其实也是废话,要是对 Y 有关的自变量有多重共线性那它就肯定不是独立于 Y 的了嘛)。

What

和岭回归很像,只是惩罚项有所变化。
||YXβ||2+k||β||2,k>0 这是岭回归的目标函数。我们把它变为 minβ ||YXβ||2+k||β|

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值