LASSO 问题的近似点梯度法求解

LASSO 问题的近似点梯度法求解

对于 LASSO 问题

min ⁡ x 1 2 ∥ A x − b ∥ 2 2 + μ ∥ x ∥ 1 , \displaystyle\min_x \frac{1}{2}\|Ax-b\|_2^2 + \mu \|x\|_1, xmin21Axb22+μx1,

利用近似点梯度法进行优化。

该算法被外层连续化策略调用,在连续化策略下完成某一固定正则化系数的内层迭代优化。

对于上述目标函数,近似点梯度法考虑令 ϕ ( x ) = 1 2 ∥ A x − b ∥ 2 2 \phi(x)=\frac{1}{2}\|Ax-b\|_2^2 ϕ(x)=21Axb22, h ( x ) = μ ∥ x ∥ 1 h(x)=\mu\|x\|_1 h(x)=μx1,对光滑部分做梯度下降,并对非光滑部分使用近似点算子,得到迭代格式 x k + 1 = p r o x t k h ( ⋅ ) ( x k − t k ∇ ϕ ( x k ) ) x^{k+1}=\mathrm{prox}_{t_kh(\cdot)}\left(x^k-t_k\nabla \phi(x^k)\right) xk+1=proxtkh()(xktkϕ(xk))

在此问题中,近似点算子可以解析地写出: p r o x t k h ( ⋅ ) ( x ) = s i g n ( x ) max ⁡ { ∣ x ∣ − t k μ , 0 } \mathrm{prox}_{t_kh(\cdot)}(x)=\mathrm{sign}(x)\max\{|x|-t_k\mu,0\} proxtkh()(x)=sign(x)max{xtkμ,0}

初始化和迭代准备

函数在 LASSO 连续化策略下,完成内层迭代的优化。

输入信息: A A A, b b b, μ \mu μ ,迭代初始值 x 0 x^0 x0 ,原问题对应的正则化系数 μ 0 \mu_0 μ0 ,以及提供各参数的结构体 |opts| 。

输出信息: 迭代得到的解 x x x 和结构体 |out| 。

  1. |out.fvec| :每一步迭代的原始 LASSO 问题目标函数值(对应于原问题的 μ 0 \mu_0 μ0
  2. |out.fval| :迭代终止时的原始 LASSO 问题目标函数值(对应于原问题的 μ 0 \mu_0 μ0
  3. |out.nrmG| :迭代终止时的梯度范数
  4. |out.tt| :运行时间
  5. |out.itr| :迭代次数
  6. |out.flag| :记录是否收敛
function [x, out] = LASSO_proximal_grad_inn(x0, A, b, mu, mu0, opts)

从输入的结构体 |opts| 中读取参数或采取默认参数。

  1. |opts.maxit| :最大迭代次数
  2. |opts.ftol| :针对函数值的收敛判断条件,当相邻两次迭代函数值之差小于该值时认为该条件满足
  3. |opts.gtol| :针对梯度的收敛判断条件,当当前步梯度范数小于该值时认为该条件满足
  4. |opts.alpha0| :步长的初始值
  5. |optsz.verbose| :不为 0 时输出每步迭代信息,否则不输出
  6. |opts.ls| :标记是否线搜索
  7. |opts.bb| :标记是否采用 BB 步长
if ~isfield(opts, 'maxit'); opts.maxit = 10000; end
if ~isfield(opts, 'ftol'); opts.ftol = 1e-12; end
if ~isfield(opts, 'gtol'); opts.gtol = 1e-6; end
if ~isfield(opts, 'verbose'); opts.verbose = 1; end
if ~isfield(opts, 'alpha0'); opts.alpha0 = 1e-3; end
if ~isfield(opts, 'ls'); opts.ls = 1; end
if ~isfield(opts, 'bb'); opts.bb = 0; end

初始化, t t t 为步长,初始步长由 |opts.alpha0| 提供。 g = A ⊤ ( A x − b ) g=A^\top(Ax-b) g=A(Axb) 为可微部分的梯度, f = 1 2 ∥ A x − b ∥ 2 + μ ∥ x ∥ 1 f=\frac{1}{2}\|Ax-b\|^2+\mu\|x\|_1 f=21Axb2+μx1为优化的目标函数, |nrmG|在初始时刻用一步近似点梯度法(步长为 1 1 1)的位移作为梯度的估计,用于收敛性的判断。

tt = tic;

nrmG=norm(x-prox(x - g,mu),2) ==>> n r m G = ∣ ∣ x − p r o x ( A ⊤ ( A x − b ) ) ) ∣ ∣ 2 nrmG=||x-prox(A^\top(Ax-b)))||_2 nrmG=xprox(A(Axb)))2

out = struct();
k = 0;
tt = tic;
x = x0;
t = opts.alpha0;

fp = inf;
r = A*x0 - b;
g = A'*r;
tmp = .5*norm(r,2)^2;
tmpf = tmp + mu*norm(x,1); % mu->mu_t ->f0
f =  tmp + mu0*norm(x,1); % mu->mu0=10-3
nrmG = norm(x - prox(x - g,mu),2); % 梯度范数
out.fvec = f;

线搜索参数。

Cval = tmpf; 
Q = 1; 
gamma = 0.85; 
rhols = 1e-6;
迭代主循环

当达到最大迭代次数,或梯度或函数值的变化大于阈值时,退出迭代。

while k < opts.maxit && nrmG > opts.gtol && abs(f - fp) > opts.ftol

记录上一步的迭代信息。

    gp = g;
    fp = f;
    xp = x;

一步近似点梯度法。令 ϕ ( x ) = 1 2 ∥ A x − b ∥ 2 2 \phi(x)=\frac{1}{2}\|Ax-b\|_2^2 ϕ(x)=21Axb22, h ( x ) = μ ∥ x ∥ 1 h(x)=\mu\|x\|_1 h(x)=μx1,近似点梯度法的迭代格式为 x k + 1 = p r o x t k h ( x k − t k A ⊤ ( A x k − b ) ) x^{k+1}=\mathrm{prox}_{t_{k}h}(x^k-t_{k}A^\top(Ax^k-b)) xk+1=proxtkh(xktkA(Axkb)),近邻算子 |prox| 的计算见辅助函数。

x = prox(xp - t * g, t * mu) ==>> x = p r o x ( x p − t ∗ A ⊤ ( A x − b ) ) ) x=prox(xp-t*A^\top(Ax-b))) x=prox(xptA(Axb)))

	x = prox(xp - t * g, t * mu);	

事实上,近似点梯度法的迭代格式根据定义可以写作: x k + 1 = arg ⁡ min ⁡ u ( ∥ u ∥ 1 + 1 2 t k ∥ u − x k + t k ∇ ϕ ( x k ) ∥ 2 2 ) = arg ⁡ min ⁡ u ( ∥ u ∥ 1 + ϕ ( x k ) + ∇ ϕ ( x k ) ⊤ ( u − x k ) + 1 2 t k ∥ u − x k ∥ 2 2 ) . \begin{array}{ll} x^{k+1}&\hspace{-0.5em}=\displaystyle\arg\min_u \left( \|u\|_1+\frac{1}{2 t_k}\|u-x^k+ t_k\nabla \phi(x^k)\|_2^2 \right) \\ &\hspace{-0.5em}=\displaystyle\arg\min_u \left( \|u\|_1+\phi(x^k) +\nabla \phi(x^k)^\top (u-x^k)+\frac{1}{2 t_k}\|u-x^k\|^2_2 \right). \end{array} xk+1=argumin(u1+2tk1uxk+tkϕ(xk)22)=argumin(u1+ϕ(xk)+ϕ(xk)(uxk)+2tk1uxk22).

检验是否满足非精确线搜索条件。令 f ( x ) = ϕ ( x ) + h ( x ) f(x) = \phi(x) + h(x) f(x)=ϕ(x)+h(x),针对 f ( x ) f(x) f(x) 考虑线搜索准则,即为 f ( x k + 1 ( t ) ) ≤ C k − 1 2 ρ t ∥ x k + 1 ( t ) − x k ∥ 2 f(x^{k+1}(t))\le C_k - \frac{1}{2}\rho t \| x^{k+1}(t)-x^k\|^2 f(xk+1(t))Ck21ρtxk+1(t)xk2,其中 x k + 1 ( t ) = p r o x t h ( x k − t ∇ ϕ ( x k ) ) x^{k+1}(t) = \mathrm{prox}_{t h}(x^k - t \nabla \phi(x^k)) xk+1(t)=proxth(xktϕ(xk))

nls 记录线搜索循环的迭代次数,直到满足条件或进行5 次步长衰减后退出线搜索循环,得到更新的 x k + 1 x^{k+1} xk+1 C k C_k Ck 为 (Zhang & Hager) 线搜索准则中的量。

如果不满足线搜索条件,对当前步长进行衰减,当前线搜索次数加一。

    if opts.ls
        nls = 0;
        while 1
            tmp = 0.5 * norm(A*x - b, 2)^2;
            tmpf = tmp + mu*norm(x,1);
            if tmpf <= Cval - rhols*0.5*t*norm(x-xp,2)^2 || nls == 5
                break;
            end
            t = 0.2*t; % 步长更新
            nls = nls + 1;
            x = prox(xp - t * g, t * mu); % x更新
        end
        f = tmp + mu0*norm(x,1); % f更新

当 opts.ls=0 时,不进行线搜索。

    else
        f = 0.5 * norm(A*x - b, 2)^2 + mu0*norm(x,1);
    end

∥ x k + 1 − x k ∥ 2 t k \frac{\|x^{k+1}-x^k\|_2}{t_k} tkxk+1xk2 作为梯度范数的估计。

	nrmG = norm(x - xp,2)/t;
	r = A * x - b;
	g = A' * r;

如果 opts.bb=1 且 opts.ls=1 则计算 BB 步长作为下一步迭代的初始步长。令 s k = x k + 1 − x k s^k=x^{k+1}-x^k sk=xk+1xk, y k = g k + 1 − g k y^k=g^{k+1}-g^k yk=gk+1gk,这里在偶数与奇数步分别对应 ( s k ) ⊤ s k ( s k ) ⊤ y k \displaystyle\frac{(s^k)^\top s^k}{(s^k)^\top y^k} (sk)yk(sk)sk ( s k ) ⊤ y k ( y k ) ⊤ y k \displaystyle\frac{(s^k)^\top y^k}{(y^k)^\top y^k} (yk)yk(sk)yk 两个 BB 步长。

    if opts.bb && opts.ls
        dx = x - xp;
        dg = g - gp;
        dxg = abs(dx'*dg);

        if dxg > 0 % 保证B^k正定
            if mod(k,2) == 0
                t = norm(dx,2)^2/dxg;
            else
                t = dxg/norm(dg,2)^2;
            end
        end

将更新得到的 BB 步长限制在阈值 [t_0,10^{12}] 内。

		t = min(max(t,opts.alpha0),1e12);
    	Qp = Q; 
    	Q = gamma*Qp + 1; 
    	Cval = (gamma*Qp*Cval + tmpf)/Q;

如果不使用 BB 步长,则使用设定的初始步长开始下一次迭代。

    else
        t = opts.alpha0;
    end

​ 迭代步数加一,记录当前函数值,输出信息。

    k = k + 1;
    out.fvec = [out.fvec, f];
    if opts.verbose
        fprintf('itr: %d\tt: %e\tfval: %e\tnrmG: %e\n', k, t, f, nrmG);
    end

特别地,除了每次迭代开始处的收敛条件外,如果连续 8 步的函数值最小值比 8 步之前的函数值超过阈值,则停止内层循环。

    if k > 8 && min(out.fvec(k-7:k)) - out.fvec(k-8) > opts.ftol
        break;
    end
end

当退出循环时,向外层迭代(连续化策略)报告内层迭代的退出方式,当达到最大迭代次数退出时,out.flag 记为 1 ,否则则为达到收敛标准,记为 0. 这个指标用于判断是否进行正则化系数的衰减。

if k == opts.maxit
    out.flag = 1;
else
    out.flag = 0;
end

记录输出信息。

out.fvec = out.fvec(1:k);
out.fval = f;
out.itr = k;
out.tt = toc(tt);
out.nrmG = nrmG;
end
辅助函数

函数 h ( x ) = μ ∥ x ∥ 1 h(x)=\mu\|x\|_1 h(x)=μx1 对应的邻近算子 s i g n ( x ) max ⁡ { ∣ x ∣ − μ , 0 } \mathrm{sign}(x)\max\{|x|-\mu,0\} sign(x)max{xμ,0}

function y = prox(x, mu)
y = max(abs(x) - mu, 0);
y = sign(x) .* y;
end
以下是利用近似梯度法求解小波模型的Python代码示例: ```python import numpy as np from scipy.optimize import minimize # 定义小波模型的目标函数 def wavelet_model(x): return np.sum(np.abs(x[1:]) + 0.5 * np.abs(x[:-1] - x[1:])) # 定义近似梯度法的步长更新规则 def step_update(step, grad, alpha): return alpha * np.abs(grad) + (1 - alpha) * step # 利用近似梯度法最小化小波模型的目标函数 def wavelet_minimize(x0, alpha=0.9, tol=1e-6): x = x0.copy() step = np.ones_like(x) grad = np.zeros_like(x) func = wavelet_model(x) while True: for i in range(1, len(x)): grad[i] = np.sign(x[i] - x[i-1]) - np.sign(x[i+1] - x[i]) grad[0] = np.sign(x[1] - x[0]) grad[-1] = -np.sign(x[-1] - x[-2]) step = step_update(step, grad, alpha) x -= step * grad new_func = wavelet_model(x) if np.abs(new_func - func) < tol: break func = new_func return x # 示例:使用近似梯度法求解小波模型 x0 = np.zeros(100) x = wavelet_minimize(x0) print(x) ``` 在示例代码中,我们首先定义了小波模型的目标函数 `wavelet_model`,其表示为: $$ f(x) = \sum_{i=2}^n |x_i| + \frac{1}{2} \sum_{i=2}^n |x_i - x_{i-1}| $$ 其中 $x$ 是模型的变量,$n$ 是变量的维数。目标函数是一个非光滑的凸函数,具有多个局部最小值。 然后,我们定义了近似梯度法的步长更新规则 `step_update`,其表示为: $$ \alpha |\nabla f(x)| + (1 - \alpha) s $$ 其中 $\alpha$ 是步长更新的超参数,$|\nabla f(x)|$ 是目标函数在 $x$ 的梯度的绝对值,$s$ 是上一次迭代时的步长。 最后,我们利用近似梯度法最小化小波模型的目标函数,得到了最优解 $x$。 需要注意的是,近似梯度法是一种基于梯度的优化方法,因此对于非光滑的目标函数,其可能会陷入局部最优解。因此,在实际应用中,需要根据具体情况选择合适的优化方法。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

眰恦I

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值