LASSO 问题的近似点梯度法求解
LASSO 问题的近似点梯度法求解
对于 LASSO 问题
min x 1 2 ∥ A x − b ∥ 2 2 + μ ∥ x ∥ 1 , \displaystyle\min_x \frac{1}{2}\|Ax-b\|_2^2 + \mu \|x\|_1, xmin21∥Ax−b∥22+μ∥x∥1,
利用近似点梯度法进行优化。
该算法被外层连续化策略调用,在连续化策略下完成某一固定正则化系数的内层迭代优化。
对于上述目标函数,近似点梯度法考虑令 ϕ ( x ) = 1 2 ∥ A x − b ∥ 2 2 \phi(x)=\frac{1}{2}\|Ax-b\|_2^2 ϕ(x)=21∥Ax−b∥22, h ( x ) = μ ∥ x ∥ 1 h(x)=\mu\|x\|_1 h(x)=μ∥x∥1,对光滑部分做梯度下降,并对非光滑部分使用近似点算子,得到迭代格式 x k + 1 = p r o x t k h ( ⋅ ) ( x k − t k ∇ ϕ ( x k ) ) x^{k+1}=\mathrm{prox}_{t_kh(\cdot)}\left(x^k-t_k\nabla \phi(x^k)\right) xk+1=proxtkh(⋅)(xk−tk∇ϕ(xk))。
在此问题中,近似点算子可以解析地写出: p r o x t k h ( ⋅ ) ( x ) = s i g n ( x ) max { ∣ x ∣ − t k μ , 0 } \mathrm{prox}_{t_kh(\cdot)}(x)=\mathrm{sign}(x)\max\{|x|-t_k\mu,0\} proxtkh(⋅)(x)=sign(x)max{∣x∣−tkμ,0}。
初始化和迭代准备
函数在 LASSO 连续化策略下,完成内层迭代的优化。
输入信息: A A A, b b b, μ \mu μ ,迭代初始值 x 0 x^0 x0 ,原问题对应的正则化系数 μ 0 \mu_0 μ0 ,以及提供各参数的结构体 |opts| 。
输出信息: 迭代得到的解 x x x 和结构体 |out| 。
- |out.fvec| :每一步迭代的原始 LASSO 问题目标函数值(对应于原问题的 μ 0 \mu_0 μ0)
- |out.fval| :迭代终止时的原始 LASSO 问题目标函数值(对应于原问题的 μ 0 \mu_0 μ0)
- |out.nrmG| :迭代终止时的梯度范数
- |out.tt| :运行时间
- |out.itr| :迭代次数
- |out.flag| :记录是否收敛
function [x, out] = LASSO_proximal_grad_inn(x0, A, b, mu, mu0, opts)
从输入的结构体 |opts| 中读取参数或采取默认参数。
- |opts.maxit| :最大迭代次数
- |opts.ftol| :针对函数值的收敛判断条件,当相邻两次迭代函数值之差小于该值时认为该条件满足
- |opts.gtol| :针对梯度的收敛判断条件,当当前步梯度范数小于该值时认为该条件满足
- |opts.alpha0| :步长的初始值
- |optsz.verbose| :不为 0 时输出每步迭代信息,否则不输出
- |opts.ls| :标记是否线搜索
- |opts.bb| :标记是否采用 BB 步长
if ~isfield(opts, 'maxit'); opts.maxit = 10000; end
if ~isfield(opts, 'ftol'); opts.ftol = 1e-12; end
if ~isfield(opts, 'gtol'); opts.gtol = 1e-6; end
if ~isfield(opts, 'verbose'); opts.verbose = 1; end
if ~isfield(opts, 'alpha0'); opts.alpha0 = 1e-3; end
if ~isfield(opts, 'ls'); opts.ls = 1; end
if ~isfield(opts, 'bb'); opts.bb = 0; end
初始化, t t t 为步长,初始步长由 |opts.alpha0| 提供。 g = A ⊤ ( A x − b ) g=A^\top(Ax-b) g=A⊤(Ax−b) 为可微部分的梯度, f = 1 2 ∥ A x − b ∥ 2 + μ ∥ x ∥ 1 f=\frac{1}{2}\|Ax-b\|^2+\mu\|x\|_1 f=21∥Ax−b∥2+μ∥x∥1为优化的目标函数, |nrmG|在初始时刻用一步近似点梯度法(步长为 1 1 1)的位移作为梯度的估计,用于收敛性的判断。
tt = tic;
nrmG=norm(x-prox(x - g,mu),2) ==>> n r m G = ∣ ∣ x − p r o x ( A ⊤ ( A x − b ) ) ) ∣ ∣ 2 nrmG=||x-prox(A^\top(Ax-b)))||_2 nrmG=∣∣x−prox(A⊤(Ax−b)))∣∣2
out = struct();
k = 0;
tt = tic;
x = x0;
t = opts.alpha0;
fp = inf;
r = A*x0 - b;
g = A'*r;
tmp = .5*norm(r,2)^2;
tmpf = tmp + mu*norm(x,1); % mu->mu_t ->f0
f = tmp + mu0*norm(x,1); % mu->mu0=10-3
nrmG = norm(x - prox(x - g,mu),2); % 梯度范数
out.fvec = f;
线搜索参数。
Cval = tmpf;
Q = 1;
gamma = 0.85;
rhols = 1e-6;
迭代主循环
当达到最大迭代次数,或梯度或函数值的变化大于阈值时,退出迭代。
while k < opts.maxit && nrmG > opts.gtol && abs(f - fp) > opts.ftol
记录上一步的迭代信息。
gp = g;
fp = f;
xp = x;
一步近似点梯度法。令 ϕ ( x ) = 1 2 ∥ A x − b ∥ 2 2 \phi(x)=\frac{1}{2}\|Ax-b\|_2^2 ϕ(x)=21∥Ax−b∥22, h ( x ) = μ ∥ x ∥ 1 h(x)=\mu\|x\|_1 h(x)=μ∥x∥1,近似点梯度法的迭代格式为 x k + 1 = p r o x t k h ( x k − t k A ⊤ ( A x k − b ) ) x^{k+1}=\mathrm{prox}_{t_{k}h}(x^k-t_{k}A^\top(Ax^k-b)) xk+1=proxtkh(xk−tkA⊤(Axk−b)),近邻算子 |prox| 的计算见辅助函数。
x = prox(xp - t * g, t * mu) ==>> x = p r o x ( x p − t ∗ A ⊤ ( A x − b ) ) ) x=prox(xp-t*A^\top(Ax-b))) x=prox(xp−t∗A⊤(Ax−b)))
x = prox(xp - t * g, t * mu);
事实上,近似点梯度法的迭代格式根据定义可以写作: x k + 1 = arg min u ( ∥ u ∥ 1 + 1 2 t k ∥ u − x k + t k ∇ ϕ ( x k ) ∥ 2 2 ) = arg min u ( ∥ u ∥ 1 + ϕ ( x k ) + ∇ ϕ ( x k ) ⊤ ( u − x k ) + 1 2 t k ∥ u − x k ∥ 2 2 ) . \begin{array}{ll} x^{k+1}&\hspace{-0.5em}=\displaystyle\arg\min_u \left( \|u\|_1+\frac{1}{2 t_k}\|u-x^k+ t_k\nabla \phi(x^k)\|_2^2 \right) \\ &\hspace{-0.5em}=\displaystyle\arg\min_u \left( \|u\|_1+\phi(x^k) +\nabla \phi(x^k)^\top (u-x^k)+\frac{1}{2 t_k}\|u-x^k\|^2_2 \right). \end{array} xk+1=argumin(∥u∥1+2tk1∥u−xk+tk∇ϕ(xk)∥22)=argumin(∥u∥1+ϕ(xk)+∇ϕ(xk)⊤(u−xk)+2tk1∥u−xk∥22).
检验是否满足非精确线搜索条件。令 f ( x ) = ϕ ( x ) + h ( x ) f(x) = \phi(x) + h(x) f(x)=ϕ(x)+h(x),针对 f ( x ) f(x) f(x) 考虑线搜索准则,即为 f ( x k + 1 ( t ) ) ≤ C k − 1 2 ρ t ∥ x k + 1 ( t ) − x k ∥ 2 f(x^{k+1}(t))\le C_k - \frac{1}{2}\rho t \| x^{k+1}(t)-x^k\|^2 f(xk+1(t))≤Ck−21ρt∥xk+1(t)−xk∥2,其中 x k + 1 ( t ) = p r o x t h ( x k − t ∇ ϕ ( x k ) ) x^{k+1}(t) = \mathrm{prox}_{t h}(x^k - t \nabla \phi(x^k)) xk+1(t)=proxth(xk−t∇ϕ(xk))。
nls 记录线搜索循环的迭代次数,直到满足条件或进行5 次步长衰减后退出线搜索循环,得到更新的 x k + 1 x^{k+1} xk+1。 C k C_k Ck 为 (Zhang & Hager) 线搜索准则中的量。
如果不满足线搜索条件,对当前步长进行衰减,当前线搜索次数加一。
if opts.ls
nls = 0;
while 1
tmp = 0.5 * norm(A*x - b, 2)^2;
tmpf = tmp + mu*norm(x,1);
if tmpf <= Cval - rhols*0.5*t*norm(x-xp,2)^2 || nls == 5
break;
end
t = 0.2*t; % 步长更新
nls = nls + 1;
x = prox(xp - t * g, t * mu); % x更新
end
f = tmp + mu0*norm(x,1); % f更新
当 opts.ls=0 时,不进行线搜索。
else
f = 0.5 * norm(A*x - b, 2)^2 + mu0*norm(x,1);
end
用 ∥ x k + 1 − x k ∥ 2 t k \frac{\|x^{k+1}-x^k\|_2}{t_k} tk∥xk+1−xk∥2 作为梯度范数的估计。
nrmG = norm(x - xp,2)/t;
r = A * x - b;
g = A' * r;
如果 opts.bb=1 且 opts.ls=1 则计算 BB 步长作为下一步迭代的初始步长。令 s k = x k + 1 − x k s^k=x^{k+1}-x^k sk=xk+1−xk, y k = g k + 1 − g k y^k=g^{k+1}-g^k yk=gk+1−gk,这里在偶数与奇数步分别对应 ( s k ) ⊤ s k ( s k ) ⊤ y k \displaystyle\frac{(s^k)^\top s^k}{(s^k)^\top y^k} (sk)⊤yk(sk)⊤sk和 ( s k ) ⊤ y k ( y k ) ⊤ y k \displaystyle\frac{(s^k)^\top y^k}{(y^k)^\top y^k} (yk)⊤yk(sk)⊤yk 两个 BB 步长。
if opts.bb && opts.ls
dx = x - xp;
dg = g - gp;
dxg = abs(dx'*dg);
if dxg > 0 % 保证B^k正定
if mod(k,2) == 0
t = norm(dx,2)^2/dxg;
else
t = dxg/norm(dg,2)^2;
end
end
将更新得到的 BB 步长限制在阈值 [t_0,10^{12}] 内。
t = min(max(t,opts.alpha0),1e12);
Qp = Q;
Q = gamma*Qp + 1;
Cval = (gamma*Qp*Cval + tmpf)/Q;
如果不使用 BB 步长,则使用设定的初始步长开始下一次迭代。
else
t = opts.alpha0;
end
迭代步数加一,记录当前函数值,输出信息。
k = k + 1;
out.fvec = [out.fvec, f];
if opts.verbose
fprintf('itr: %d\tt: %e\tfval: %e\tnrmG: %e\n', k, t, f, nrmG);
end
特别地,除了每次迭代开始处的收敛条件外,如果连续 8 步的函数值最小值比 8 步之前的函数值超过阈值,则停止内层循环。
if k > 8 && min(out.fvec(k-7:k)) - out.fvec(k-8) > opts.ftol
break;
end
end
当退出循环时,向外层迭代(连续化策略)报告内层迭代的退出方式,当达到最大迭代次数退出时,out.flag 记为 1 ,否则则为达到收敛标准,记为 0. 这个指标用于判断是否进行正则化系数的衰减。
if k == opts.maxit
out.flag = 1;
else
out.flag = 0;
end
记录输出信息。
out.fvec = out.fvec(1:k);
out.fval = f;
out.itr = k;
out.tt = toc(tt);
out.nrmG = nrmG;
end
辅助函数
函数 h ( x ) = μ ∥ x ∥ 1 h(x)=\mu\|x\|_1 h(x)=μ∥x∥1 对应的邻近算子 s i g n ( x ) max { ∣ x ∣ − μ , 0 } \mathrm{sign}(x)\max\{|x|-\mu,0\} sign(x)max{∣x∣−μ,0}。
function y = prox(x, mu)
y = max(abs(x) - mu, 0);
y = sign(x) .* y;
end