统计学习

本文探讨了如何将复杂问题视为输入到输入的函数,利用计算机自动学习规律,解决诸如语音识别和手写识别等问题。重点介绍了学习的概念、统计学习方法及其在预测新数据上的应用,包括监督学习、无监督学习和模型构建过程。
摘要由CSDN通过智能技术生成

why

把问题看成是从输入到输入的函数。则有些问题很难通过人类编特定程序解决,或者解决的算法资源消耗过大,如语音识别手写字识别等。因此想让计算机自己从数据中找出规律,并通过找出的规律来解决类似的新问题,而不是对问题让人来编写特定算法。

what

学习: 系统通过统计的方法提升自身性能的过程。
统计学习: 用计算机对给定数据构建模型,再用模型对数据进行分析(如找出数据之间关系)或预测。


How

Created with Raphaël 2.1.2 data learning model feed new data? prediction 对新给定的x值预测y值 description 分析y与x之间的关系 yes no
Created with Raphaël 2.1.2 x model-- h(x) y

基本假设:
1. X和Y具有联合概率分布(X和Y存在统计上的关系规律)
1. training data是从分布中iid抽取 的(从同一分不中采样出的,相互之间独立)
2. model 属于某函数的集合(假设空间)
因此在learning 中需要确定模型选择标准(策略)和与之对应的实现选择模型的算法。
所以统计学习由三部分构成: 策略算法模型空间

x是某系统的(所研究问题的)输入,代表数据的特征,用随机变量表述; y是该系统输出。当training dataset格式是 <x,y> <script type="math/tex" id="MathJax-Element-4"> </script>时(即x上有label,right answer),叫做supervised learning;当输入的dataset没有label,则叫做unsupervised learning。

针对y的数据类型,supervised learning 又可分为1. regression (连续的实数) 2. classification (离散的类别)。unsupervised learning 是通过一系列决定来找出数据中的有趣结构,也叫做clustering。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值