Python实现KNN回归

本文介绍了KNN算法在回归任务中的应用。通过找到每个样本的k个最近邻,使用这些邻居的目标值的加权平均(weights='distance')来预测样本的属性。代码示例展示了如何在Python中实现这一过程,参考了scikit-learn库中的KNeighborsRegressor。
摘要由CSDN通过智能技术生成

KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。

以下是KNN回归(calendar_strategy_KNN.py)中用到的部分代码:

    X = np.array(X)
    Y = np.array(Y)
    X = X.reshape(-1,1)
    Y = Y.reshape(-1,1)
    X_test = np.array(OutofExpectation)
    clf=knr(n_neighbors=Events_minimum_counts, weights='distance').fit(X,Y)
    Y_test = clf.predict(X_test) 

其中fit(x,y)表示 :
x作为训练样本,y作为目标值。即找到x最近的k个邻居的y值,将其加权平均(weights=’distance’),将平均后的值作为此样本的y值。

参考文献(K近邻回归算法实现):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值