微分方程
微分方程的思路框架非常非常清晰!
解题全靠套路)- 本文将按照一阶,二阶可降阶,高阶常系数线性微分方程展开
一阶: 一共四种方法,不行再试试 x,y互换
-
遇到一阶微分方程,先想方设法孤立
y'
-
如果
y'
可以写成f(x)*f(y)
: 变量可分离型
解决方法:把原方程含y部分移到等式左边,含x部分移到等式右端,两边求不定积分即可。 -
不要忘记 ‘+C’!
-
如果
y'
可以写成f(y/x)
: 齐次型
解决方法:令u=y/x
u = y x u=\frac{y}{x} u=xy
y = u x y=ux y=ux
d y d x = u + x d u d x \dfrac{dy}{dx}=u+x\dfrac{du}{dx} dxdy=u+xdxdu然后带入原方程就转化成了变量可分离型。
-
如果原方程可以写成 y ′ + p ( x ) y = Q ( x ) y^{'}+p(x)y=Q(x) y′+p(x)y=Q(x)那么是一阶线性微分方程型。
解决方法:带公式 y = e − ∫ p ( x ) d x ( ∫ Q ( x ) e ∫ p ( x ) d x + C ) y=e^{-\int p(x)dx}(\int Q(x)e^{\int p(x)dx}+C) y=e−∫p(x)dx(∫Q(x)e∫p(x)dx+C) -
如果原方程可以写成 y ′ + p ( x ) y = Q ( x ) y n y^{'}+p(x)y=Q(x)y^{n} y′+p(x)y=Q(x)yn那么是伯努利方程型。
- 解决方法:
- 第一步: z = y 1 − n z=y^{1-n} z=y1−n, 则 d z d x = ( 1 − n ) y − n d y d x \frac{dz}{dx}=(1-n)y^{-n}\frac{dy}{dx} dxdz=(1−n)y−ndxdy
- 第二步:原方程两边同时乘以 y − n y^{-n} y−n,再同时乘以 ( 1 − n ) (1-n) (1−n).
- 第三步:带入第一步求出的 d y d x \frac{dy}{dx} dxdy, 就转化成了一阶线性。
- 解决方法:
-
如果一个一阶微分方程以上四种方法都不能求解,那试试看x,y互换,最后求完了记得换回来。
二阶可降阶
- 第一种:“缺y型”
- y ′ ′ = f ( x , y ′ ) y''=f(x,y') y′′=f(x,y′)
- 令 y ′ = p , 则 y ′ ′ = p ′ = d p d x y'=p,则y''=p'=\frac{dp}{dx} y′=p,则y′′=p′=dxdp,那么原方程就变成一阶方程 d p d x = f ( x , p ) \frac{dp}{dx}=f(x,p) dxdp=f(x,p)
- 第一种:“缺x型”
- y ′ ′ = f ( y , y ′ ) y''=f(y,y') y′′=f(y,y′)
- 同样令 y ′ = p y'=p y′=p,为了避免出现 x , y ′ ′ = p ′ = d p d x = d p d y ⋅ d y d x = d p d y ⋅ p x,y''=p'=\frac{dp}{dx}=\frac{dp}{dy}·\frac{dy}{dx}=\frac{dp}{dy}·p x,y′′=p′=dxdp=dydp⋅dxdy=dydp⋅p
- 那么原方程就变成一阶方程 p d p d y = f ( y , p ) p\frac{dp}{dy}=f(y,p) pdydp=f(y,p)
高阶常系数
-
解的结构,不再赘述
-
形如 y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y′′+py′+qy=f(x)的
-
其解是 齐次通解+一个特解
-
求“齐次通解”:
- 求解 λ 2 + p λ + q = 0 , 得 到 λ 1 , λ 2 \lambda^2+p\lambda+q=0,得到\lambda_1,\lambda_2 λ2+pλ+q=0,得到λ1,λ2
- 如果 λ 1 ≠ λ 2 , 通 解 为 : y = C 1 e λ 1 x + C 2 e λ 2 x \lambda_1\neq\lambda_2,通解为:y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x} λ1=λ2,通解为:y=C1eλ1x+C2eλ2x
- 如果 λ 1 = λ 2 = λ , 通 解 为 : y = ( C 1 + C 2 x ) e λ x \lambda_1=\lambda_2=\lambda,通解为:y=(C_1+C_2x)e^{\lambda x} λ1=λ2=λ,通解为:y=(C1+C2x)eλx
- 如果 λ 1 = α + β i , λ 2 = α − β i , 通 解 为 : y = e α x ( C 1 c o s β x + C 2 s i n β x ) \lambda_1=\alpha+\beta i,\lambda_2=\alpha-\beta i,通解为:y=e^{\alpha x}(C_1cos\beta x+C_2sin\beta x) λ1=α+βi,λ2=α−βi,通解为:y=eαx(C1cosβx+C2sinβx)
-
求“一个特解”
-
根据 f ( x ) f(x) f(x)的形式分两种情况(其他情况需要更加高深的数学知识,书上没写,我也不会……)
-
如果 f ( x ) = e a x P n ( x ) f(x)=e^{ax}P_n(x) f(x)=eaxPn(x):
-
设某个特解 y ∗ = e a x Q n ( x ) x k , y^*=e^{ax}Q_n(x)x^k, y∗=eaxQn(x)xk, 其 中 e a x 照 抄 , 其中e^{ax}照抄, 其中eax照抄,
-
Q n ( x ) 是 和 P n ( x ) 同 阶 的 待 定 多 项 式 ( 比 如 P n ( x ) 是 二 阶 的 , Q n ( x ) 就 设 为 a x 2 + b x + c ) , k = { 0 , α ≠ λ 1 且 α ≠ λ 2 1 , α ≠ λ 1 或 α ≠ λ 2 2 , α = λ 1 = λ 2 Q_n(x)是和P_n(x)同阶的待定多项式(比如P_n(x)是二阶的,Q_n(x)就设为ax^2+bx+c),k=\begin{cases}0, \alpha \neq \lambda_1 且 \alpha \neq \lambda_2 \\ 1, \alpha \neq \lambda_1 或 \alpha \neq \lambda_2 \\ 2, \alpha=\lambda_1=\lambda_2 \end{cases} Qn(x)是和Pn(x)同阶的待定多项式(比如Pn(x)是二阶的,Qn(x)就设为ax2+bx+c),k=⎩⎪⎨⎪⎧0,α=λ1且α=λ21,α=λ1或α=λ22,α=λ1=λ2
-
代入原方程求出待定的系数就行了。
-
-
如果 f ( x ) = e a x [ P m ( x ) c o s β x + P n ( x ) s i n β x ] f(x)=e^{ax}[P_m(x)cos\beta x +P_n(x)sin\beta x] f(x)=eax[Pm(x)cosβx+Pn(x)sinβx]:
-
设某个特解 y ∗ = e a x [ Q l 1 ( x ) c o s β x + Q l 2 ( x ) s i n β x ] x k , y^*=e^{ax}[Q_l^1(x)cos\beta x + Q_l^2(x)sin \beta x]x^k, y∗=eax[Ql1(x)cosβx+Ql2(x)sinβx]xk, 其 中 e a x 照 抄 , 其中e^{ax}照抄, 其中eax照抄,
-
Q l 1 ( x ) 和 Q l 2 ( x ) 是 不 同 的 两 个 待 定 多 项 式 , l 是 m , n 里 面 较 大 的 那 个 。 k = { 0 , α ± β i 不 是 特 征 根 1 , α ± β i 是 特 征 根 Q_l^1(x)和Q_l^2(x)是不同的两个待定多项式,l是m,n 里面较大的那个。 k=\begin{cases}0, \alpha \pm \beta i不是特征根 \\ 1, \alpha \pm \beta i是特征根 \end{cases} Ql1(x)和Ql2(x)是不同的两个待定多项式,l是m,n里面较大的那个。k={0,α±βi不是特征根1,α±βi是特征根
-
代入原方程求出待定的系数就行了。
-
-
-
形如 x 2 y ′ ′ + p x y ′ + q y = f ( x ) x^2y''+pxy'+qy=f(x) x2y′′+pxy′+qy=f(x):
- 令 x = e t , 则 t = l n x , d t d x = 1 / x x=e^t,则t=lnx,\frac{dt}{dx}=1/x x=et,则t=lnx,dxdt=1/x
- 于是,
d
y
d
x
=
d
y
d
t
⋅
d
t
d
x
=
d
y
d
t
⋅
1
x
\frac{dy}{dx}=\frac{dy}{dt}·\frac{dt}{dx}=\frac{dy}{dt}·\frac{1}{x}
dxdy=dtdy⋅dxdt=dtdy⋅x1
d 2 y d x 2 = d d x ( d y d t ⋅ 1 x ) = d 2 y d t 2 1 x 2 − 1 x 2 d y d t \frac{d^2y}{dx^2}=\frac{d}{dx}(\frac{dy}{dt}·\frac{1}{x})=\frac{d^2y}{dt^2}\frac{1}{x^2}-\frac{1}{x^2}\frac{dy}{dt} dx2d2y=dxd(dtdy⋅x1)=dt2d2yx21−x21dtdy注意这里是对x 求导。 - 代入原方程就变成了上一种我们会解的情况。
- 最后记得用 t = l n x t=lnx t=lnx回代。
微分方程基本题型就是这些,
纯手打,如有错误欢迎留言指正。