LLM 参数量和内存占用计算

本文探讨了不同精度(fp32、fp16、int8)下模型参数的存储需求,以及混合精度对内存的影响。同时提及训练过程中梯度和优化器(如Adam)对内存占用的额外考虑。
摘要由CSDN通过智能技术生成

7b = 7billion = 7*10^9 个参数(1billion就是10亿就是9个0)

fp32精度,一个参数4byte,1G=10^9 byte, 所以 7b就占7*4GB。

fp16精度,一个参数2byte, 7b就占7*2GB

int8精度,一个参数1byte,  7b就占7*1GB

混合精度(fp16/32), 存储fp16精度+fp32精度 = 14GB +28GB = 42GB

此外,训练时占内存的还有梯度(和模型参数本身大小一样),优化器(如使用adam,是模型本身大小*2,因为要计算动量和方差)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__心似大海__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值