【定积分】基本知识点+考点

本文深入讲解定积分的概念、性质及应用,包括计算方法、反常积分解析与几何意义等内容。

定积分

本文将以 考点+一般的出题套路+一般解决方法 为脉络展开。

考点一:概念

定积分的概念

  • 要求曲边梯形的面积,但不好求
  • 但是求矩形面积是方便的
  • 划分成长条矩形(这里等不等分结果一样,所以采取等分)
  • 一个长条矩形的面积 S i = Δ x i f ( ξ i ) S_i=\Delta x_if(\xi_i) Si=Δxif(ξi)
  • n个长条矩形的面积 S = Σ i = 1 n [ Δ x i f ( ξ i ) ] S=\Sigma_{i=1}^{n} [ \Delta x_if(\xi_i)] S=Σi=1n[Δxif(ξi)]
  • 但是求矩形面积毕竟不够精准,所以将结果推向极限,对曲边梯形进行无限的分割: S = l i m n → ∞ Σ i = 1 n [ Δ x i f ( ξ i ) ] S=lim_{n\rightarrow\infty}\Sigma_{i=1}^{n} [ \Delta x_if(\xi_i)] S=limnΣi=1n[Δxif(ξi)]
  • 其中,根据上图可以容易得到: Δ x i = b − a n \Delta x_i=\frac{b-a}{n} Δxi=nba f ( ξ i ) = f ( a + ( b − a ) i n ) f(\xi_i)=f(a+\frac{(b-a)i}{n}) f(ξi)=f(a+n(ba)i),带入S的公式,就得到了定积分的定义。
  • S = ∫ a b f ( x ) d x = l i m n → ∞ Σ i = 1 n [ Δ x i f ( ξ i ) ] = l i m n → ∞ Σ i = 1 n [ b − a n f ( a + ( b − a ) i n ) ] S=\int_a^bf(x)dx=lim_{n\rightarrow\infty}\Sigma_{i=1}^{n} [ \Delta x_if(\xi_i)]=lim_{n\rightarrow\infty}\Sigma_{i=1}^{n} [\frac{b-a}{n}f(a+\frac{(b-a)i}{n})] S=abf(x)dx=limnΣi=1n[Δxif(ξi)]=limnΣi=1n[nbaf(a+n(ba)i)]
  • 这个考点一般以求无限项相加的极限的形式出现,而且一般只考a=0,b=1 的情况: l i m n → ∞ Σ i = 1 n [ 1 n f ( i n ) ] = ∫ 0 1 f ( x ) d x lim_{n\rightarrow\infty}\Sigma_{i=1}^{n} [\frac{1}{n}f(\frac{i}{n})]=\int_0^1f(x)dx limnΣi=1n[n1f(ni)]=01f(x)dx
  • 举个例子马上就懂了:

求以下极限: l i m n → ∞ Σ i = 1 n 1 1 − ( i n ) 2 1 n lim_{n\rightarrow\infty}\Sigma_{i=1}^{n} \frac{1}{\sqrt{1-(\frac{i}{n})^2}}\frac{1}{n} limnΣi=1n1(ni)2 1n1

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__心似大海__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值