定积分
本文将以 考点+一般的出题套路+一般解决方法 为脉络展开。
考点一:概念

- 要求曲边梯形的面积,但不好求
- 但是求矩形面积是方便的
- 划分成长条矩形(这里等不等分结果一样,所以采取等分)
- 一个长条矩形的面积 S i = Δ x i f ( ξ i ) S_i=\Delta x_if(\xi_i) Si=Δxif(ξi)
- n个长条矩形的面积 S = Σ i = 1 n [ Δ x i f ( ξ i ) ] S=\Sigma_{i=1}^{n} [ \Delta x_if(\xi_i)] S=Σi=1n[Δxif(ξi)]
- 但是求矩形面积毕竟不够精准,所以将结果推向极限,对曲边梯形进行无限的分割: S = l i m n → ∞ Σ i = 1 n [ Δ x i f ( ξ i ) ] S=lim_{n\rightarrow\infty}\Sigma_{i=1}^{n} [ \Delta x_if(\xi_i)] S=limn→∞Σi=1n[Δxif(ξi)]
- 其中,根据上图可以容易得到: Δ x i = b − a n \Delta x_i=\frac{b-a}{n} Δxi=nb−a, f ( ξ i ) = f ( a + ( b − a ) i n ) f(\xi_i)=f(a+\frac{(b-a)i}{n}) f(ξi)=f(a+n(b−a)i),带入S的公式,就得到了定积分的定义。
- S = ∫ a b f ( x ) d x = l i m n → ∞ Σ i = 1 n [ Δ x i f ( ξ i ) ] = l i m n → ∞ Σ i = 1 n [ b − a n f ( a + ( b − a ) i n ) ] S=\int_a^bf(x)dx=lim_{n\rightarrow\infty}\Sigma_{i=1}^{n} [ \Delta x_if(\xi_i)]=lim_{n\rightarrow\infty}\Sigma_{i=1}^{n} [\frac{b-a}{n}f(a+\frac{(b-a)i}{n})] S=∫abf(x)dx=limn→∞Σi=1n[Δxif(ξi)]=limn→∞Σi=1n[nb−af(a+n(b−a)i)]
- 这个考点一般以
求无限项相加的极限的形式出现,而且一般只考a=0,b=1 的情况: l i m n → ∞ Σ i = 1 n [ 1 n f ( i n ) ] = ∫ 0 1 f ( x ) d x lim_{n\rightarrow\infty}\Sigma_{i=1}^{n} [\frac{1}{n}f(\frac{i}{n})]=\int_0^1f(x)dx limn→∞Σi=1n[n1f(ni)]=∫01f(x)dx - 举个例子马上就懂了:
求以下极限: l i m n → ∞ Σ i = 1 n 1 1 − ( i n ) 2 1 n lim_{n\rightarrow\infty}\Sigma_{i=1}^{n} \frac{1}{\sqrt{1-(\frac{i}{n})^2}}\frac{1}{n} limn→∞Σi=1n1−(ni)21n1

本文深入讲解定积分的概念、性质及应用,包括计算方法、反常积分解析与几何意义等内容。
最低0.47元/天 解锁文章
44万+





