机器学习总结(lecture 19)大数据:MapReduce、Hadoop、Spark

lecture 19:MapReduce、Hadoop、Spark

目录

1MapReduce分布式计算的框架

一些开源的软件项目提供了海量数据处理的解决方案,其中一个项目就是Hadoop,它采用Java语言编写,支持在大量机器上分布式处理数据。

Hadoop是MapReduce框架的一个免费开源实现
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

2Hadoop流

这里写图片描述
分布式计算均值和方差的mapper、reducer

3Spark

参考博客:http://blog.csdn.net/swing2008/article/details/60869183

Apache Spark是一个围绕速度、易用性和复杂分析构建的大数据处理框架,最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一,与Hadoop和Storm等其他大数据和MapReduce技术相比,Spark有如下优势:

  • Spark提供了一个全面、统一的框架用于管理各种有着不同性质(文本数据、图表数据等)的数据集和数据源(批量数据或实时的流数据)的大数据处理的需求
  • 官方资料介绍Spark可以将Hadoop集群中的应用在内存中的运行速度提升100倍,甚至能够将应用在磁盘上的运行速度提升10倍

目录:

  • 架构及生态
  • spark 与 hadoop
  • 运行流程及特点
  • 常用术语
  • standalone模式
  • yarn集群
  • RDD运行流程

3.1架构及生态

通常当需要处理的数据量超过了单机尺度(比如我们的计算机有4GB的内存,而我们需要处理100GB以上的数据)这时我们可以选择spark集群进行计算,有时我们可能需要处理的数据量并不大,但是计算很复杂,需要大量的时间,这时我们也可以选择利用spark集群强大的计算资源,并行化地计算,其架构示意图如下:
这里写图片描述
Spark Core:包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和Spark Core之上的

  • Spark SQL:提供通过Apache Hive的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作。
  • Spark Streaming:对实时数据流进行处理和控制。Spark Streaming允许程序能够像普通RDD一样处理实时数据
  • MLlib:一个常用机器学习算法库,算法被实现为对RDD的Spark操作。这个库包含可扩展的学习算法,比如分类、回归等需要对大量数据集进行迭代的操作。
  • GraphX:控制图、并行图操作和计算的一组算法和工具的集合。GraphX扩展了RDD API,包含控制图、创建子图、访问路径上所有顶点的操作

3.2Spark与hadoop

  • Hadoop有两个核心模块,分布式存储模块HDFS和分布式计算模块Mapreduce
  • spark本身并没有提供分布式文件系统,因此spark的分析大多依赖于Hadoop的分布式文件系统HDFS
  • Hadoop的Mapreduce与spark都可以进行数据计算,而相比于Mapreduce,spark的速度更快并且提供的功能更加丰富

这里写图片描述

3.3运行流程

这里写图片描述

4Spark例子

https://www.cnblogs.com/shiyanlou/p/7199460.html
http://blog.csdn.net/gongpulin/article/details/51534754

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值