Python数据可视化:mplfinance创建蜡烛图(二)

1.make_addplot()函数

make_addplot不仅可通过常规变量的可视化,还可可视化一些其他的分析数据,make_addplot可以接受DataFrame、Ndarray、list格式的数据以及**kwargs参数。需要注意的是,传递给make_addplot的数据必须与传递给plot的数据行数相同,**kwargs参数将全部传递到plot方法中。

1.1 计算布林带上中下轨

df['upper'], df['Middler'], df['Lower'] = tb.BBANDS(df['close'], timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) 
df.fillna(method='bfill',inplace=True) # 用下一个非空值向上填充
print(df)

在这里插入图片描述

1.2 在主图上绘制附图

add_plot=mpf.make_addplot(df[['upper','Middler','Lower']])
mpf.plot(df,type='candle',mav=(5,10,30),volume=True,addplot=add_plot)

在这里插入图片描述

1.2.1 将数据分析的结果标记到图像中

在make_addplot方法中使用maker参数,并使用markersize和color设置标记的大小和颜色
这些参数可直接传递给plot方法。

def find_signal(df):
    # 收盘价上穿布林带上轨做多
    df.loc[(df['close'].shift(1) <= df['upper'].shift(1)) & (df['close'] > df['upper']), 'signal_long'] = 1
    # 收盘价下穿布林带中轨平仓
    df.loc[(df['close'].shift(1) >= df['middler'].shift(1)) & (df['close'] < df['middler']), 'signal_short'] = -1
    return df
df=find_signal(df)
df.loc[df['signal_short'].notna(),'signal_short']=df['high']

add_plot=[mpf.make_addplot(df[['upper','middler','lower']]),
          mpf.make_addplot(df['signal_short'].values,type='scatter',markersize=20,marker='v',color='g')]
mpf.plot(df,type='candle',volume=True,addplot=add_plot)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7Uqw0rXU-1651144011842)(img_15.png)]

1.2.2 绘制子图

在make_addplot中使用panel参数绘制子图,panel=0为在主图中绘制,其最多可绘制9张子图。
当同一个副图绘制的图形超过两个小时,可用secondary_y参数,其有三个参数,True、False,auto,默认为auto,
绘制的数据多时最好用secondary_y=True。

add_plot=[mpf.make_addplot(df[['upper','middler','lower']]),
          mpf.make_addplot(df['signal_short'].values,type='scatter',markersize=20,marker='v',color='g'),
          mpf.make_addplot(df['close'].values,panel=2,color='y',secondary_y='auto')]
mpf.plot(df,type='candle',volume=True,addplot=add_plot)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vFTxz5Wi-1651144011843)(img_16.png)]

1.2.3 调整子图位置

在mpf.plot()方法中使用main_panel这两个关键字,更改主图和成交量子图的位置。

add_plot=[mpf.make_addplot(df[['upper','middler','lower']]),
          mpf.make_addplot(df['signal_short'].values,type='scatter',markersize=20,marker='v',color='g'),
          mpf.make_addplot(df['close'].values,panel=1,color='y',secondary_y='auto')]
mpf.plot(df,type='candle',volume=True,addplot=add_plot,main_panel=2,volume_panel=0)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZzMnu8ea-1651144011843)(img_17.png)]

1.2.4 设置主图与子图的比例和数量

在mpf.plot()使用num_panels设置图形张数,使用panel_ratios设置各张图之间的比例,panel_ratio=(2,1,1)即图0是2,以此类推。

add_plot=[mpf.make_addplot(df[['upper','middler','lower']]),
          mpf.make_addplot(df['signal_short'].values,type='scatter',markersize=20,marker='v',color='g'),
          mpf.make_addplot(df['close'].values,panel=1,color='y',secondary_y='auto')]
mpf.plot(df,type='candle',volume=True,addplot=add_plot,main_panel=2,volume_panel=0,num_panels=3,panel_ratios=(2,1,1))

在这里插入图片描述

1.2.5 设置图表中线的类型

使用linestyle函数设置线

add_plot=[mpf.make_addplot(df[['upper']],linestyle='dashdot'),
          mpf.make_addplot(df[['middler']],linestyle='dashdot'),
          mpf.make_addplot(df[['lower']],linestyle='dashdot'),
          mpf.make_addplot(df['signal_short'].values,type='scatter',markersize=20,marker='v',color='g'),
          mpf.make_addplot(df['close'].values,panel=2,color='y',secondary_y='auto')]
mpf.plot(df,type='candle',volume=True,addplot=add_plot,main_panel=0,volume_panel=1,num_panels=3,panel_ratios=(2,1,1))

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-84GuAgto-1651144011845)(img_19.png)]

  • 6
    点赞
  • 8
    收藏 更改收藏夹
  • 打赏
    打赏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码力十足学量化

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值