mplfinance 使用make_addplot做复杂股票走势图

mplfinance 使用make_addplot做复杂股票走势图

1.代码

import talib as tb
import pandas as pd
import mplfinance as mpf

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif']=['simHei'] # 以黑体显示中文
plt.rcParams['axes.unicode_minus']=False # 解决保存图像符号“-”显示问题

def find_signal(df):
    # 收盘价上穿布林带中轨做多,增加signal_long 列
    df.loc[(df['close'].shift(1) <= df['middler'].shift(1)) & (df['close'] > df['middler']), 'signal_long'] = 1
    # 收盘价下穿布林带上轨平仓,增加signal_short 列
    df.loc[(df['close'].shift(1) >= df['upper'].shift(1)) & (df['close'] < df['upper']), 'signal_short'] = -1

    return df

df = df.loc['2020-06-01':'2020-12-31']
# 处理 :A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_in
df = df.copy()

df['upper'], df['middler'], df['lower'] = tb.BBANDS(df['close'], timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)

#df.fillna(method='bfill',inplace=True) # 用下一个非空值向上填充 ,标志位填充混乱了

df=find_signal(df)

df.loc[df['signal_short']== -1,'signal_short']=df['high'] # 卖出点的标志放在最高点
df.loc[df['signal_long']== 1,'signal_long']=df['low'] # 买入点的标志放在最低点

my_color=mpf.make_marketcolors(up='red',down='green',edge='black',wick='i',volume={'up':'red','down':'green'},ohlc='black',inherit=False)
my_style=mpf.make_mpf_style(base_mpf_style='sas',marketcolors=my_color,gridaxis='both',gridstyle='-.',
                            y_on_right=False,rc={'font.family':'SimHei'})

add_plot=[mpf.make_addplot(df[['upper']].values,linestyle='dashdot'),
          mpf.make_addplot(df[['middler']].values,linestyle='--'),
          mpf.make_addplot(df[['lower']].values,linestyle='dashdot'),
          mpf.make_addplot(df[['signal_short']].values,type='scatter',markersize=20,marker='v',color='g'), #卖出标志
          mpf.make_addplot(df[['signal_long']].values,type='scatter',markersize=20,marker='^',color='r'), # 买入标志
          mpf.make_addplot(df[['close']].values,panel=2,color='orange',secondary_y='auto'),
          mpf.make_addplot(df[['open']].values,panel=2,color='red',secondary_y='auto')]

mpf.plot(df,type='candle',volume=True,addplot=add_plot,main_panel=0,volume_panel=1,
         num_panels=3,panel_ratios=(2,1,1),style=my_style, title='布林线',ylabel='价格',ylabel_lower='成交量',
         figratio=(9,6),figscale=1.2,show_nontrading=False)

2.图示效果

在这里插入图片描述

3.说明

1.make_mpf_style()函数
make_mpf_style(base_mpf_style,base_mpl_style,marketcolors,mavcolors,facecolor,edgecolor,figcolor,gridcolor,gridaxis,gridstyle,y_on_right,rc)

函数部分参数如下:

  • 1).base_mpf_style设置需要继承的系统样式;
  • 2).base_mpl_style设置同时使用matplotlib中的式样seaborn;
  • 3).marketcolor设置K线的颜色,可以使用make_marketcolors()函数进行定义;
  • 4).mavcolors设置均线的颜色,必须使用列表传参;
  • 5).facecolor设置前景色;
  • 6).edgecolor设置边缘线颜色;
  • 7).figcolor设置图像外周围填充色;
  • 8).gridcolor设置网格线颜色;
  • 9).gridaxis设置网格线的位置,gridaxis=‘both’/‘horizontal’/‘vertical’;
  • 10).gridstyle设置网格线线型,gridstyle=‘solid’/‘dashed’/‘dashdot’/‘dotted’;
  • 11).y_on_right设置y轴位置是否在右,y_on_right=True设为右边;
  • 12).rc使用rcParams的dict设置格式;

2.关于make_mpf_style()函数中的marketcolors参数
make_marketcolors(up,down,edge,wick,volume,ohlc,inherit)
函数部分参数如下:

  • 1).up设置阳线柱填充颜色;
  • 2).down设置阴线线柱填充颜色;
  • 3).edge设置蜡烛线边缘颜色,edge='i’代表继承K线主体颜色;
  • 4).wick设置蜡烛线上下影线的颜色,wick='i’代表继承K线主体的颜色;
  • 5).volume设置成交量的颜色,volume='i’代表继承K线主体颜色;
  • 6).ohlc设置均线颜色,代表继承K线主体的颜色;
  • 7).inherit设置是否继承,如果设置了继承inherit=True,那么edge/wick/volume/ohlc 四个参数即便设置了颜色也会无效,其中edge/wick/volume/ohlc四个参数除了设置’i’ 自动继承up和down的颜色外,也可以使用dict模式定义。

参考:
https://blog.csdn.net/malishizu222/article/details/124484598
https://blog.csdn.net/qq_39065491/article/details/130010354

4. 问题

make_addplot函数的一些主要参数说明:

数据参数:

  • Ndarray、list:make_addplot可以接受这些格式的数据作为输入。这意味着你可以传递一个pandas DataFrame、numpy Ndarray或一个Python list来包含你想要在主图上展示的额外数据。
  • 特殊参数:
    **kwargs:这是一个可变关键字参数,意味着你可以传递任何额外的关键字参数给make_addplot。这些参数随后将被传递到绘图方法(如plot)中。
  • 注意事项:
    传递给make_addplot的数据参数行数必须与将来传递给plot方法的数据行数相同。这是因为make_addplot是为了在主价格图下方同步地添加额外的图表或数据。
  • 标记参数:
    marker:用于设置标记的形状,例如^表示正三角形,v表示倒三角形。
    markersize:用于设置标记点的大小。
    color:用于设置标记点的颜色。请注意,这个颜色设置是针对标记点的,而不是线条的颜色。
    布局参数:
  • panel:当设置为"lower"时,可以让线条显示在附图的成交量上方。

make_addplot()必须使用Ndarray,否则报错

print(type(df[['upper']]))
print(type(df['upper']))
print(type(df['close'].values))

结果是:

<class 'pandas.core.frame.DataFrame'>
<class 'pandas.core.series.Series'>
<class 'numpy.ndarray'>

必须用 df[‘close’].values !!!
不是ndarray类型,直接把报错,折腾了半天才找到原因!!!

ValueError: Multi-dimensional indexing (e.g. obj[:, None]) is no longer supported. Convert to a numpy array before indexing instead.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值