自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 主成分分析 PCA

主成分分析(PCA)是一种常用的数据降维方法,可以将高维数据转换为低维空间,同时保留原始数据中最具代表性的信息。在数学建模中,PCA可以应用于多个领域,例如金融、医学、自然语言处理等。压缩后的数据对分类、聚类尽量不产生影响,甚至有所提升。特征约减的目的是将高维特征向量映射到低维子空间中。例如,在基因序列中对于特定疾病有价值的点位十分。将原始高维向量通过投影矩阵,投射到低维空间。的是这些向量的数量要远小于高维空间的维度。引入sklearn中的手写数字识别。高维空间到低维空间的线性映射。有价值的维度往往很少。

2024-01-01 21:06:08 1005

原创 支持向量机-SVM

支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,SVM可以用于线性和非线性分类问题,回归以及异常值检测其基本原理是通过在特征空间中找到一个超平面,将不同类别的样本分开,并且使得离超平面最近的样本点到超平面的距离最大化。以一个二维平面为例,判定边界是一个超平面(在本图中其实是一条线,但是可以将它想象为一个平面乃至更高维形式在二维平面的映射),它是由支持向量所确定的(支持向量是离判定边界最近的样本点,它们决定了判定边界的位置)。

2023-12-18 21:40:50 887 1

原创 Logistic回归

线性模型的一般形式为其中的X1,X2....Xd是由d维属性描绘的样本,其中的Xi是表明在第i个属性的取值它的向量形式为其中的W1,W2.....Wd为待求解系数线性学习的目的学习一个线性模型尽可能预测实际输出。

2023-12-04 21:56:26 405

原创 朴素贝叶斯分类(垃圾邮件分类)

朴素:特征条件独立;贝叶斯:基于贝叶斯定理。属于监督学习的生成模型,实现简单,没有迭代,并有坚实的数学理论(即贝叶斯定理)作为支撑。在大量样本下会有较好的表现,不适用于输入向量的特征条件有关联的场景。

2023-11-20 18:25:46 221 1

原创 决策树及其python实现(机器学习)

什么是决策树?分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点和有向边组成。结点有两种类型:内部结点和叶节点。内部结点表示一个特征或属性,叶节点表示一个类。

2023-11-06 21:09:18 449

原创 机器学习:分类模型性能评估(Accurary Precision Recall F1分数 PR ROC)

理想的PR曲线应该尽可能地接近右上角,这意味着模型在保持高召回率的同时,也能保持高精确度。这里特指负样本数量远大于正样本时,在这类问题中,我们往往更关注正样本是否被正确分类,即TP的值。其中横坐标为假正率(FPR),纵坐标为真正率(TPR),下面就是一个标准的 ROC 曲线图。所有被预测为正的样本中实际为正的样本的概率,公式如下:实际为正的样本中被预测为正样本的概率,其公式如下。如果我们把精确率(Precision)和召回率(Recall)之间的关系用图来表达,就是下面的PR曲线。

2023-10-23 21:48:39 219

原创 KNN算法及实现(鸢尾花分类)附带数据集

k值过小容易导致KNN算法的过拟合如果k值比较小,相当于我们用较小的领域内的训练样本对实例进行预测。这时,算法的近似误差(Approximate Error)会比较小,因为只有与输入实例相近的训练样本才会对预测结果起作用。但是,它也有明显的缺点:算法的估计误差比较大,预测结果会对近邻点十分敏感k值过大容易导致KNN算法的欠拟合如果k值选择较大的话,距离较远的训练样本也能够对实例预测结果产生影响。算法的近邻误差会偏大,距离较远的点(与预测实例不相似)也会同样对预测结果产生影响,使得预测结果产生较大偏差。

2023-10-09 21:48:18 1472 1

原创 安装Anaconda3和Visual Studio Code及其配置(机器学习环境搭建)

安装Anaconda和VsCode

2023-09-24 10:11:41 2912 1

KNN算法及实现(鸢尾花分类)附带数据集

鸢尾花分类数据集

2023-10-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除