主成分分析 PCA

主成分分析的概念

主成分分析(PCA)是一种常用的数据降维方法,可以将高维数据转换为低维空间,同时保留原始数据中最具代表性的信息。在数学建模中,PCA可以应用于多个领域,例如金融、医学、自然语言处理等。

维度约减的概念

特征约减的目的是将高维特征向量映射到低维子空间中
给定 n 个样本(每个样本维度为 p 维){X1,X2,X3...Xn}
通过特征变换 / 投影矩阵实现特征空间的压缩:

为什么要进行维度约减

大多数机器学习算法在高维空间中表现不够鲁棒
查询速度与精度随着维度增加而降低.
有价值的维度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值