一文看遍AI行业大模型

前言

通用大模型技术快速发展,但很多传统行业推进得并不快。对企业而言,大模型应用需要综合考虑专业性、数据安全、持续迭代和综合成本等多种因素。针对这些现实情况,腾讯集团提出重点发展行业大模型的理念。本文基于一线大量实践反馈,做出系统归纳总结,呈现行业大模型发展真实情况,厘清关键争议和困惑问题。真正解决用户需求、距离场景和数据更近的企业,将拥有大模型的未来。

行业大模型弥合技术与需求差距

1. 大模型引发智能革命

2022年11月30日,一款名为大语言模型(LLM,Large Language Model)的应用发布后,用户数量迅速增加,成为历史上增长最快的应用。ChatGPT的火爆标志着人工智能(AI,Artificial Intelligence)大模型时代的开启,也预示着AI迈向通用人工智能(AGI, Artificial General Intelligence)新阶段的到来。当前业界对大模型尚未形成统一的定义,狭义上通常指大语言模型,基于Transformer技术框架;广义上则包括了语言、声音、图像、视频等多模态大模型,涵盖了稳定扩散模型(Stable Diffusion)等技术框架。

在大模型诞生之前,人工智能主要依赖针对特定任务和场景设计的专用算法模型,只能执行在训练数据范围内的单一任务。大模型的重大突破在于展现了类人的通用智能“涌现”能力,能够学习多个领域的知识并处理各种任务,因此也被称为通用大模型。大模型具备多种显著特点。

首先,参数规模巨大。大模型的参数规模远超传统深度学习模型,体现了规模定律(Scaling Law)的特征,即模型性能与规模、数据集大小和计算量之间呈现幂律关系,随着这三者的指数增加,模型性能显著提升。简单来说,就是规模越大,效果越好。传统模型的参数量通常在数万到数亿之间,而大模型的参数量至少在亿级,甚至已经达到过万亿级。

其次,泛化能力强。大模型能够有效处理多种未见过的数据或新任务。基于注意力机制,通过在大规模、多样化的无标注数据集上进行预训练,大模型能够学习并掌握丰富的通用知识和方法,从而在各种场景和任务中应用。大模型在新任务上表现优异,即使仅需少量特定任务的数据样本。

最后,支持多模态。大模型可以高效处理多种模态数据。传统深度学习模型大多只能处理单一数据类型(如文本、语音或图像),而大模型通过扩展编/解码器、交叉注意力、迁移学习等方式,实现跨模态数据的关联理解、检索和生成。多模态大模型(LMMs,Large Multimodal Models)提供了更加全面的认知能力和丰富的交互体验,拓宽了AI处理复杂任务的应用范围,是业界探索通用人工智能的重要路径之一。

2. 行业大模型是AI+落地最后一公里

规模定律推动了通用大模型性能的不断提升,但同时也引发了“不可能三角”问题:专业性、泛化性和经济性三者难以兼顾。

首先,专业性是指大模型在处理特定领域问题时的准确性和效率。要提高专业性,需要使用特定领域的数据进行训练,这可能导致模型过拟合,从而降低泛化能力。此外,收集和训练更多数据会增加成本,降低经济性。

其次,泛化性是指大模型处理未见过的新样本的能力。提高泛化性需要多样化的大规模训练数据和更多的模型参数,这会增加训练和使用成本,降低经济性,同时可能影响模型在特定领域的专业能力。

最后,经济性是指大模型训练和应用的成本效益。要提高经济性,需要减少计算资源和成本以满足性能要求,但这通常需要使用更小的模型或更少的参数,这又会降低模型的性能表现。

通用大模型旨在发展通识能力,主要关注泛化性,因此在专业性和经济性方面难以完全满足具体行业的需求,可能出现“幻觉”和高成本等问题。

在行业机构中应用大模型时,还有两个关键因素需要考虑:竞争和安全。数据转化为竞争力是核心驱动力。为了提升竞争力,机构会寻找性能最佳的模型,并利用行业专业数据或私有数据对模型进行定制和优化。目前,市场上的顶级通用大模型如GPT-4等多为闭源,通过网页、APP或API服务大众用户和开发者,定制调整的空间有限。保障安全可控是基本要求。大模型不仅涉及机构私有数据的使用,还与业务流程结合,这使得在使用大模型时必须重视安全性和可控性。通用大模型通常基于公有云提供服务,这会引起机构对私有数据和敏感数据安全的担忧。

由于通用大模型与行业/机构具体需求之间存在差距,行业大模型应运而生,凭借其优势(见图1),有效支持各行各业加速落地大模型应用,弥合差距。

1. **高性价比:**行业大模型在较小参数量的基础上,通过相对低成本的再训练或精调,能够取得不错的性能表现。目前,参数量在十亿到百亿之间的行业大模型是主流选择,相较于参数量动辄千亿级的通用大模型,能显著降低开发成本。

  1. **专业定制:**行业大模型可以基于开源模型进行开发,能够根据需求对模型结构和参数进行调整,以更好地适应个性化应用需求。通过模型即服务(MaaS,Model as a Service,见图2)方式,机构可以从平台提供的多种模型中快速选择适合的产品,包括厂商开发的行业大模型初始版本。

3.安全可控:行业大模型可采用私有化部署方式,使机构能更放心地利用私有数据提升应用效果,减少数据安全疑虑。

3. 行业大模型长在通用大模型上

行业大模型是相对于通用大模型提出的概念。通用大模型主要着重于发展广泛的知识和能力,而行业大模型则侧重于专业领域的知识和技能。从实际应用来看,行业大模型不仅指专为某一行业开发的模型,还包括基于通用大模型进行调整和优化的行业应用。因此,广义的行业大模型可以理解为:利用大模型技术,针对特定数据和任务进行训练或优化,从而形成具备专业知识和能力的大模型及其应用。此外,国际上常用垂直模型(Vertical Model)或垂直人工智能(Vertical AI)来描述这种概念,在国内则有垂类模型、领域模型、专属模型等称呼。

行业大模型通常是在通用大模型的基础上构建的。通用大模型具备广泛的知识和强大的泛化能力,不仅能够为行业大模型提供丰富的知识基础和良好的交互体验,还能显著减少从头训练模型所需的海量数据和计算资源,大大提高行业大模型的开发效率和效果。通过提示工程、检索增强生成、精调、继续预训练或后训练等方法,模型可以更好地处理特定数据或任务,形成行业大模型版本(模型结构变化)或具备行业大模型的功能(模型结构不变)。目前市场上的许多行业大模型,如金融、法律、教育、传媒、文旅等,都是基于Llama、SD、GLM、Baichuan等国内外主流开源大模型进行构建的(如图3所示)。

行业大模型的核心在于提供解决方案,通常需要针对特定的数据和任务进行定制化开发或调整。这类模型主要服务于B端客户,每个客户都有独特的业务、数据和流程,因此需要用大模型解决的具体问题也存在个性化需求。由此可见,厂商提供的行业大模型不仅是产品和工具,更需要提供定制化的服务与支持,甚至需要客户共同参与开发。可以这样理解,行业大模型中的产品通常像是“毛坯房”,客户需要根据自身的需求进行“装修”才能满足其使用要求。

大模型行业应用进展与评估

不同行业大模型技术落地进度各异,这种差异主要由大模型技术的成熟度、行业数字化水平、投入产出比、行业对专业性和准确性的要求以及安全可控等因素决定。

1. 行业大模型应用阶段划分

参考埃弗雷特·罗杰斯在《创新的扩散》一书中对创新阶段的分类,本文从技术发展和市场渗透两个维度构建视图,并结合一线调研数据,全面评估和定位各行业在2024年初的状态,以便比较各行业采纳大模型技术的进展。研究结果显示,目前各行业在大模型技术的采用上主要集中在两个阶段:探索孵化期和试验加速期。部分行业已经进入采纳成长期,但尚无行业达到落地成熟期。

阶段一:探索孵化期,以农业和能源行业为代表。在这些行业中,尝试采用大模型的机构数量较少,但一些领先或创新意识强的机构正积极探索。关键在于证明技术的可行性和实用性,同时解决行业特有的挑战。这一阶段面临较高的风险和不确定性,但也有机会引领市场。

阶段二:试验加速期,代表行业有教育、金融、游戏和出行等。这些行业通常具有较好的数据基础,探索应用大模型的机构数量快速增长,并开始在特定应用场景中产生经济价值。机构关注技术如何解决实际问题,例如金融量化策略的胜率提升、游戏设计的成本降低等。成功案例在这一阶段起着风向标的作用,实用效益能够吸引更多参与者加入。

阶段三:采纳成长期,广告和软件行业是这一阶段的典型代表。这些行业中的主要机构已普遍采纳并使用大模型技术。由于大模型与这些行业的基础能力高度匹配,文案生成、图像生成、代码生成和数据分析等功能已被大量使用。继续扩大市场的关键在于进一步优化技术应用,提升用户体验和效率,同时降低成本。

阶段四:落地成熟期,目前尚无行业达到此阶段。这个阶段意味着大模型技术应用基本成熟,绝大多数机构已在主要生产运营场景中使用,并与供应商建立了稳定的商业合作关系。目前,大模型技术距离成熟还有较长的路要走,其稳定性、可解释性以及插件调用的可靠性等,都是行业应用进入成熟期的必要条件。

2. 行业大模型应用场景分析

调查结果显示,多个行业已经开始探索大模型技术在各生产环节的应用,包括研发/设计、生产/制造、市场/销售、客户服务和经营管理等。

横向对比各行业,本文进一步阐述大模型应用进展的具体场景。数字原生行业在大模型应用方面走在前列。互联网、游戏等行业,由于数字化程度高、数据积累丰富、技术接受度强,成为大模型落地较快的领域。这些行业的大模型应用场景广泛,涵盖营销、客服、内容生成等多个环节,目前已经积累了较为成熟的实践经验。生产性服务业成为传统行业结合大模型的示范区。金融、广告、软件等行业,因其产品和业务的非实物属性,在客户服务和数据处理方面有强需求,与当前大模型技术能力高度契合,推进较快。

例如,金融机构利用大模型增强服务的广度和精度,实现营销、风控、投研等环节的赋能和提效。这些行业的大模型实践正在加速成熟,并向场景纵深探索。重资产行业在大模型应用上仍处于局部探索阶段。能源/电力、建筑、制造业等行业,由于线下生产流程复杂且高度专业化,大模型应用推进相对缓慢。这些行业的核心环节在生产运营,需要在通用大模型能力基础上,进一步深度整合行业专业知识,同时确保准确性和安全,避免误判问题,还需长期、渐进的过程。例如,制造业需要将大模型与工业互联网、数字孪生等基础设施及专业数据深度结合,在工艺优化、质量控制、设备维护等核心领域发挥更大价值。总体而言,影响行业应用大模型速度的两个关键因素是:数据可得性和需求适配度。高质量数据越容易获取,进展越快;行业核心业务与大模型的创意生成和交互能力越匹配,进展越快。

深入行业纵向环节来看,当前大模型技术渗透呈现出类似产业微笑曲线的特征,即在产业链高附加价值的两端(研发/设计和营销/服务),大模型应用落地较快,而在低附加价值中部(生产、组装等),应用进程较慢。究其原因,大模型技术带来的智力即服务的范式变化,特别适配微笑曲线两端的知识密集型和服务密集型领域,对人类能力提升乃至部分替代效果显著,掀起了脑力劳动大规模工业化、自动化的新篇章。

营销/服务环节进展最快,跨行业通用性强是重要原因。在产业链下游的营销与服务环节,基于机构自有知识库的内容生成与智能对话,能显著提升营销和服务活动的效率和体验,成为各行业尝试应用大模型的先行领域。营销和服务大多直接面向C端用户,跨行业通用性强,能够充分利用通用大模型的基础能力和通用的营销、服务知识,快速开发和调试出适配机构需要的应用。

研发/设计环节结合最深,高质量专业数据集决定进程。在产业链上游的设计研发环节,大模型对海量知识的高效学习、推理和生成能力,不仅能够大幅提升文案、影像、代码等内容创意的生成效率,还适用于生物、环境、材料等涉及海量科研数据处理的科学计算领域。是否具备高质量的专业数据集,决定了不同行业、领域在这一环节进展的快慢。文案、影像、代码等领域拥有大量基于互联网的开放、开源数据集,因此这些领域进展最快;有高质量、大规模开放数据集的科研领域进展也较快。例如,DeepMind开发的AlphaFold能够仅凭氨基酸预测蛋白质3D结构,大幅提升了蛋白质研究进程,其成功依赖于开放数据集进行预训练;工业研发/设计方面,芯片、汽车等领域也出现了用大模型辅助设计生成的应用,但由于这些领域涉及强商业竞争,高质量的开放数据集难以获取,需要更多投入,实用进展相对缓慢。

3. 行业大模型评估标准

随着大模型的不断发展和在各行业中的逐步应用,越来越多的行业机构开始关注如何评判大模型的成功。这是当前业界普遍面临的挑战。尽管大模型技术还处于早期发展阶段,但技术的快速迭代带来了巨大的创新价值。同时,由于规模定律的影响,算力等投入也呈现出指数级增长的趋势。许多行业机构对此感到无从下手,更缺乏足够的应用经验来衡量成功。然而,没有衡量标准和方法,很难全力投入技术创新和应用,容易陷入决策困境。

结合多方实践调研和国际前沿探索,本文提出了一套衡量行业大模型应用成功的2-3-1原则:避免两个误区,评估三类价值,构建一个模式。

避免两个误区。首先,不应将技术指标视为大模型成功的唯一标准。一些机构往往专注于技术性能,通过提高指标数值来证明大模型的成功。然而,这些技术指标并不能直接反映大模型的实际价值。我们应该更加关注业务指标,如用户数量、使用量、收入等,并将技术指标与业务指标结合起来,以业务发展引导技术开发和优化。

其次,避免过度关注短期投资回报而忽视长期投入。虽然行业重视大模型的实用性和投入产出比无可厚非,但如果将大模型等同于成熟业务,并要求短期内实现正向盈利,这不利于大模型的长远发展。大模型仍处于快速迭代阶段,存在大量不确定性。合理的做法是将大模型视为研发或孵化项目,不苛求短期财务指标,而是关注业务和技术指标的相对提升。

评估三类价值。一是降低成本和提升效率。大模型可以增强人员能力,提升自动化水平,从而简化流程。

二是业务创新。大模型的生成能力可以扩大内容供给,并结合应用场景创造新功能或业务。

三是提升用户体验。随着大模型向多模态和具身智能方向发展,可以为用户提供更加自然和丰富的语言交互体验。

构建一个模式。数据是大模型运作和创造价值的核心能源。对具体行业机构来说,大模型的价值生成和扩展能力取决于如何充分利用自身特有的数据。在数据问题上,存在一个误区,即数据量越大越好。实际上,与数据规模相比,数据质量对大模型性能更为重要,尤其是对于专业性和准确性要求高的行业大模型。

构建行业大模型时,需要从一开始就纳入高质量的数据环境,通过系统化的数据治理设计,优先开发数据管道,使大模型能够与相关机构的自有数据源建立连接,支持后续持续获得有效数据,形成数据飞轮。高质量的数据环境不仅是将企业任意数据拿来使用,而是需要与应用相关、能够提供上下文理解的数据,重点投资于持续标记、组织和监控这些数据,如行业专家的问答内容。数据架构还需要涵盖结构化和非结构化数据源,支持多样化的数据处理。

行业大模型技术多维优化策略

行业大模型的构建和应用中,由于需求和目标不同,技术实现复杂性差异也较大。通过调研总结,目前机构在使用大模型适配行业应用过程中,从易到难主要有提示工程、检索增强生成、精调、预训练四类方式。企业通常不会只用一种方式,而会组合使用,以实现最佳效果。

1. 引导:提示工程

提示工程(Prompt Engineering)指通过针对性地设计提示词(Prompt),引导大模型产生特定应用场景所需的输出。提示工程上手相对简单,不需要批量采集与构建数据集,更不需要调整或训练模型,很多企业刚接触大模型时会采用这种方式探索应用。通用大模型的能力虽然强大,较少输入也可以生成内容,但随意输入可能产生无效或错误输出,通过系统设计提示词,规范模型输入输出方式,企业能够快速得到更准确和实用的结果。

提示工程成为持续优化大模型应用的基本方法。通过构建提示库并不断更新,企业大模型应用开发人员能够在不同场景中重复使用这些提示词,再将用户的开放式输入封装到提示词中传给模型,使模型输出更相关、更准确的内容,避免用户反复试验从而提升体验。任务的复杂度决定了提示工程的技术方式选择。简单任务可以用零样本提示、少样本提示的方式,不提供或少量提供示例给模型,让模型能够快速输出结果。复杂任务则大多需要拆解为若干步骤、提供更多示例,采取思维链提示等方式,让模型能够逐步推理输出更精准的结果。提示工程的效果高度依赖通用大模型本身的能力。如果通用大模型训练时包含了行业应用相关的数据,提示工程就能有效引导模型输出更符合行业需要的结果,但若通用大模型本身内含的行业应用数据较少,提示工程的作用就会比较有限。

2. 外挂:检索增强生成

检索增强生成(RAG,Retrieval-Augmented Generation)指在不改变大模型本身的基础上,通过外挂知识库等方式,为模型提供特定领域的数据信息输入,实现对该领域更准确的信息检索和生成。RAG能有效帮助企业快速利用大模型处理私有数据,已经成为企业部署行业大模型应用的主流选择,特别适用于数据资源基础较好的企业、需要准确引用特定领域知识的场景,如客服问答、内容查询与推荐等。

主要优点有:提高模型应用的专业准确性,让模型能基于特定数据生成内容、降低幻觉;满足企业自有数据所有权保障的需要,模型本身只会查找和调用外挂的数据,不会吸收数据并训练成模型内含的知识;具备较高性价比,底层大模型本身不做调整,不用投入大量算力等资源做精调或预训练,能够更快速开发和部署应用。

RAG的能力核心是有效结合了检索和生成两种方法。基本思路是把私有数据进行切片,向量化后通过向量检索进行召回,再作为上下文输入到通用大模型,模型再进行分析和回答。

具体应用时,当用户提出一个问题或请求,RAG首先检索私有数据,找到与问题相关的信息。这些信息接着被整合到原始问题中,作为额外的上下文信息和原始问题一起输入大模型。大模型接到这个增强的提示后,将其与自己内部知识进行综合,最后生成更准确的内容。向量化成为RAG提升私有数据调用效率的普遍手段。通过将各种数据统一转化成向量,能更高效地处理各类非结构化数据,进行相似性搜索,从而在大规模数据集中快速找到最相似向量,适合大模型检索和调用各种数据的需要。

3. 优化:精调

精调(FT,Fine-Tuning),通常也被称为微调,指的是在已经预训练好的大模型的基础之上,依据特定的数据集对部分参数做进一步的调整,让模型能够更出色地适应业务场景,精准且高效地完成特定的任务,这是当下在行业大模型构建中较为常用的一种方法。精调适用于特定领域对大模型有着更高性能要求的场景。

在行业的实际应用里,当通用的大模型无法准确地理解或者生成专业内容的时候,能够通过精调的方式,增强大模型在理解行业特定术语以及正确运用行业知识方面的能力,同时保证大模型的输出符合特定的业务规则或者逻辑。精调能够将行业知识内化为大模型的参数。经过精调后的大模型不但保留了通用知识,还能够相对准确地理解和运用行业知识,更好地适应行业内部的多样化场景,提供更贴合实际需求的解决办法。

精调属于对大模型定制优化和成本投入的一种折中的选择。精调常常会涉及到大模型权重参数或者模型结构的调整,并且需要经过多次的迭代才能够达到性能的要求,所以相较于提示工程、RAG 等不改变模型本身的方式,会需要更长的时间以及更多的计算资源。

当然,和从头预训练大模型相比,精调依然是一种更为经济且高效的方法,因为通常情况下只需要对模型进行局部的调整,所需的训练数据也相对较少。高质量的数据集是决定精调后模型性能的关键因素。数据集需要和业务场景紧密相关,并且数据的标注要高度精确。高质量的数据集既会来源于企业内部数据的提取,也会来自于外部数据的采集,都需要进行专门的数据标注处理。这些数据需要具有代表性、多样性以及准确性,并且要符合数据隐私等法规的要求。只有当充足的高质量数据被用于训练的时候,精调才能够真正地发挥作用。精调的策略也会直接影响到大模型最终的性能。

精调分为全量精调和局部精调。局部精调的方法更加高效,在实践当中也比全量精调运用得更多,常见的形式包括:有监督精调(SFT,Supervised Fine-Tuning),即在特定任务的标注数据上对模型进行调整;低秩调整(LORA,Low-Rank Adaptation),通过低秩矩阵的更新来减少所需学习的参数量;适配器层(Adapter Layers)技术则是在模型当中加入小型的网络层,专注训练特定的层以适应新的任务。精调策略的选择可以根据具体的任务需求、数据的可用性以及计算资源的限制进行综合的考虑。

4. 原生:预训练

当通过提示词工程、检索增强生成以及精调这三种方式都无法满足需求标准的时候,我们还能够选择预训练(Pre-Training)的方式,去构建一个专门为特定行业量身定制的大模型。预训练的行业大模型适用于那些和现有大模型存在较大差异的场景,这要求我们搜集并标注数量众多的行业特定数据,其中涵盖了文本、图像、交互记录,还有特殊格式的数据(比如基因序列)。在训练的过程当中,模型通常会选择从底层的参数开始训练,或者基于已经具备一定能力的通用模型来进行后训练(Post-Training),从而让大模型能够更好地领会特定领域的术语、知识以及工作流程,提升大模型在行业应用里的性能与准确性,保障其在该领域的专业性和效率。

比如说谷歌的蛋白质生成模型 AlphaFold2,这是专门针对生物信息学的大模型,它的预训练包含了对大量实验室测定的蛋白质结构数据的深入剖析和学习,使得模型能够捕捉到蛋白质序列和其空间结构之间的复杂关联,进而精确地理解和预测蛋白质的复杂三维结构。

预训练方式的投入成本颇为高昂,当下采用的情况较少。它不但需要大量的计算资源以及漫长的训练过程,还需要行业专家紧密地协作以及深度地介入。此外,从头进行预训练还涉及到复杂的数据处理以及模型架构的设计工作,还有在训练过程中持续不断地调优和验证。所以,只有极少数的企业和科研机构具备采用这种高投入、高风险,然而潜在回报也同样高的方式的能力。

在未来,伴随着技术的发展和成本的降低,预训练的行业大模型可能会有所增多。预训练行业大模型的技术流程和通用大模型相类似,不过会更加注重行业特性。在数据集的准备方面,从一开始就会融入行业特性的数据,在模型构建的技术与流程上,和通用大模型的预训练类似,会牵涉到模型架构的设计、预训练任务的挑选、大量的数据处理、大规模的无监督或者自监督学习等等。例如运用自监督学习(SSL,Self-Supervised Learning)技术,通过从数据自身生成标签来学习数据的内在结构和特征,无需人工标注数据,以及基于人类反馈的强化学习(RLHF, Reinforcement Learning from Human Feedback)技术,通过引入人类专家的主观反馈来引导模型的学习过程,产生出更高质量的输出。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
在这里插入图片描述

篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥《中国大模型落地应用案例集》 收录了52个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述
💥《2024大模型行业应用十大典范案例集》 汇集了文化、医药、IT、钢铁、航空、企业服务等行业在大模型应用领域的典范案例。

在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓
在这里插入图片描述

  • 28
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值