ASAP和ALAP

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:http://blog.csdn.net/xiaxiaing00/article/details/78250235

收起

一、ASAP和ALAP的概念

最近在看一些算法的论文,其中涉及了ASAP和ALAP算法,这两种算法由很多的应用背景,在此仅阐述对于图中节点执行顺序的选择。首先从字面上理解,ASAP是as soon as possible,是尽快执行的意思,即当图中节点没有依赖关系和资源限制的前提下就可以马上执行;相反的,ALAP是as late as possible的意思,即在图中关键路径执行结束前拖到最晚执行。从字面上理解有点笼统,下面我们可以通过一个例子来理解:

图a是DFG图,图中节点有两种,三角形和圆形分别代表不同的操作,如加操作、乘操作、加载操作、存储操作等,图中的边表示不同操作之间的依赖关系,图b是ASAP算法下的调度方式,在第0步时,0 1 3 4这四个节点没有父节点的限制,则尽快在第一步执行,当第0步执行完毕后,在图中去掉这四个节点,所以2 5 7这三个节点又没有了父节点的依赖限制,所以在第1步就执行2 5 7,依次类推,在第2步执行6,在第3步执行8。图c是ALAP算法,可以看出,0->2->6->8是这个图的关键路径,即最长的路径,所有节点要尽量靠后执行,节点是根据关键路径反向尽快执行,图中的7节点可以在第1步或者第2步执行则选择靠后的第2步,4节点可以选择在第0步和第1步执行,则选择靠后的第1步。

二、c++代码实现

1.输入

输入图文件如下所示,其中每一行的第一个数字表示一个节点,后面的所有数字表示为第一个数字的子节点,对于后面的所有数字来说,第一个数字使他们的父节点。每一行都是如此。例如第一行表示,节点0是父节点,8 23 26 28 31 37 39 46全部是0节点的子节点。

 

 
  1. 0 8 23 26 28 31 37 39 46

  2. 8 28 31 37 39

  3. 23 8 28 31 37 39

  4. 26 8 23 28 31 37 39

  5. 31 28 37 39

  6. 37 28 39

  7. 39 28

  8. 46 8 23 26 28 31 37 39

  9. 53 13

 

2.算法实现

 
  1. #include<iostream>

  2. #include<fstream>

  3. #include<vector>

  4. #include <regex>

  5. #include<map>

  6.  
  7. using namespace std;

  8.  
  9. /*存储图节点*/

  10. struct node {

  11. int name;

  12. vector<int> parent;

  13. vector<int> child;

  14. int priority = 0;

  15. };

  16.  
  17. void input(vector<vector<int>> &Vec_Dti, string FileName);

  18. void initData(map<int, node> &map, vector<vector<int>> inData);

  19. void ASAP(vector<vector<int>> &output_ASAP, map<int, node> m);

  20. void ALAP(vector<vector<int>> &output_ALAP, map<int, node> m);

  21. void delate(map<int, node> &m, vector<int> key );

  22. void print(vector<vector<int>> output);

  23.  
  24. void main() {

  25.  
  26. vector<vector<int>> inData;

  27. string FileName = "E:/graph_copy.g";

  28. input(inData, FileName);

  29.  
  30. map<int, node> m;

  31. initData(m, inData);

  32.  
  33. vector<vector<int>> output_ASAP;

  34. ASAP(output_ASAP, m);

  35. cout << "-----------ASAP-------------" << endl;

  36. print(output_ASAP);

  37.  
  38. vector<vector<int>> output_ALAP;

  39. ALAP(output_ALAP, m);

  40. cout << "------------ALAP------------" << endl;

  41. print(output_ALAP);

  42.  
  43.  
  44. system("PAUSE");

  45. }

  46.  
  47.  
  48. /*fuction:input

  49. 将文件中标示图的节点以二维组的形式存放在vector中*/

  50. void input(vector<vector<int>> &Vec_Dti,string FileName) {

  51. vector<int> temp_line;

  52. string line;

  53. ifstream in(FileName); //读入文件

  54. regex pat_regex("[[:digit:]]+"); //匹配原则,这里代表一个或多个数字

  55.  
  56. while (getline(in, line)) { //按行读取

  57. for (sregex_iterator it(line.begin(), line.end(), pat_regex), end_it; it != end_it; ++it) { //表达式匹配,匹配一行中所有满足条件的字符

  58. temp_line.push_back(stoi(it->str())); //将数据转化为int型并存入一维vector中

  59. }

  60. Vec_Dti.push_back(temp_line); //保存所有数据

  61. temp_line.clear();

  62. }

  63.  
  64. }

  65.  
  66. /*fuction:initData

  67. 初始化node结构体,存储在map中,记录图的各个节点的依赖关系

  68. 所给的图文件,结构像一个邻接表,每一行的第一个数字代表节点名字,后面的所有节点都是第一个节点的子节点*/

  69. void initData(map<int,node> &m,vector<vector<int>> inData) {

  70. for (int i = 0; i < inData.size(); i++) {

  71. node tmp;

  72. tmp.name = inData[i][0];//记录每一行第一节点的名字

  73. for (int j=1; j < inData[i].size(); j++) {

  74. tmp.child.push_back(inData[i][j]);//将每一行第一个节点后的所有节点记录到该节点的孩子节点数组中

  75. }

  76. m[tmp.name] = tmp;

  77. }

  78. //每行第一个节点都是后面所有节点的父节点,所以,将父节点的信息存储到每个节点的父节点数组中

  79. for (int i = 0; i < inData.size(); i++) {

  80. for (int j = 1; j < inData[i].size(); j++) {

  81. m[inData[i][j]].name = inData[i][j];

  82. m[inData[i][j]].parent.push_back(inData[i][0]);

  83. }

  84.  
  85. }

  86.  
  87. }

  88.  
  89. /*fuction:print

  90. 计算结果存储在一个二维的vector中,将结果输出在终端上*/

  91. void print(vector<vector<int>> output) {

  92. for (auto i : output) {

  93. for (auto j : i) {

  94. cout << j << " ";

  95. }

  96. cout << endl;

  97. }

  98. }

  99.  
  100. /*fuction:ASAP

  101. 将图中所有没有父母节点先执行,并在图中删除这些已执行的节点,直到图中所有节点被删除*/

  102. void ASAP(vector<vector<int>> &output_ASAP, map<int, node> m) {

  103. map<int, node>::iterator it;

  104.  
  105. while (!m.empty()) {//当图中所有节点都被删除时结束

  106. vector<int> tmp;

  107. it = m.begin();

  108. while (it != m.end()) {

  109.  
  110. if (it->second.parent.size() == 0) {//找到所有没有父节点的节点,将其存在一个tmp数组中

  111. tmp.push_back(it->first);

  112. }

  113. it++;

  114. }

  115. output_ASAP.push_back(tmp);

  116. delate(m, tmp);//将tmp数组中的所有节点以及有关的依赖关系删除

  117. }

  118. }

  119.  
  120. /*fuction:ALAP

  121. ALAP的关键是要倒着用ASAP调度,然后反转结果即可,将图中所有没有孩子节点先执行,并在图中删除这些已执行的节点,直到图中所有节点被删除,最后反转结果顺序*/

  122. void ALAP(vector<vector<int>> &output_ALAP, map<int, node> m) {

  123. map<int, node>::iterator it;

  124.  
  125. while (!m.empty()) {

  126. vector<int> tmp;

  127. it = m.begin();

  128. while (it != m.end()) {

  129.  
  130. if (it->second.child.size() == 0) {//找到所有没有子节点的节点,将其存在一个tmp数组中

  131. tmp.push_back(it->first);

  132. }

  133. it++;

  134. }

  135. output_ALAP.push_back(tmp);

  136. delate(m, tmp);//删除tmp

  137. }

  138. int n = output_ALAP.size() ;

  139. for (int i = 0; i < n/2; i++) {//将所得结果反转即是ALAP的结果

  140. vector<int> tm;

  141. tm = output_ALAP[i];

  142. output_ALAP[i] = output_ALAP[n - i - 1];

  143. output_ALAP[n - i - 1] = tm;

  144. }

  145. }

  146.  
  147.  
  148. /*function:delate

  149. 删除图中的某些节点,即key中存储的节点,再删除节点时,要将图中所有有关这些节点的依赖关系删除,即以这些删除节点为父节点或孩子节点的依赖关系删除*/

  150. void delate(map<int, node> &m, vector<int> key) {

  151. map<int, node>::iterator it;

  152. it = m.begin();

  153. while (it != m.end()) {//删掉每个节点中有关的依赖关系,即在父节点数组和子节点数组中删掉key

  154. vector<int> parent = it->second.parent;

  155. vector<int> child = it->second.child;

  156. vector<int>::iterator itr;

  157. for (int t = 0; t < key.size(); t++) {

  158. for (itr = parent.begin(); itr != parent.end(); ) {

  159.  
  160. if (*itr == key[t]) {

  161. itr = parent.erase(itr);

  162. }

  163. else {

  164. ++itr;

  165. }

  166.  
  167. }

  168.  
  169. for (itr = child.begin(); itr != child.end();) {

  170. if (*itr == key[t]) {

  171. itr = child.erase(itr);

  172. }

  173. else {

  174. ++itr;

  175. }

  176.  
  177. }

  178. }

  179. it->second.parent = parent;

  180. it->second.child = child;

  181. it++;

  182. }

  183.  
  184. //从map中删掉key

  185. for (int t = 0; t < key.size(); t++) {

  186. map<int, node>::iterator k = m.find(key[t]);

  187. if (k != m.end()) {

  188. m.erase(k);

  189. }

  190. }

  191.  
  192.  
  193. }

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页